Aims: Aortic dissection (AD) represents one of the most common aortic emergencies with high incidence of morbidity and mortality. Clinical studies have shown that the increased excitability of the sympathetic nerve may be associated with the formation of AD. In this study, we examined the effects of bilateral superior cervical sympathectomy (SCGx) on the progression of β-aminopropionitrile (BAPN)-induced AD in rats.
Main Methods: Sprague-Dawley rats were randomly divided into three groups, including BAPN, BAPN+SCGx and control groups. For terminal measurements, the mean arterial pressure (MAP) and heart rate (HR) were monitored and the basal sympathetic nerve activity (SNA) was assessed through recording the variation in arterial pressure in response to hexamethonium application. Pathological changes in the aortic wall were observed by histological staining. Matrix metalloproteinase-2 (MMP-2) and MMP-9 concentrations within the aortic wall were analyzed by western blot.
Key Findings: The results show that BAPN administration could elevate SNA and cause the formation of AD in rats with a high incidence (67.7%), while SCGx treatment inhibited the elevation of SNA and significantly reduced the incidence (20%). SCGx may suppress the formation of BAPN-induced AD via restraining the rise of HR and reducing the MMP-9 concentration in aortic wall.
Significance: These results indicate that surgical techniques such as sympathetic nerve block may be a potentially useful therapy for the prevention of AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2017.10.043 | DOI Listing |
Am J Physiol Heart Circ Physiol
January 2025
Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada.
XXXX.
View Article and Find Full Text PDFInt J Oral Sci
January 2025
Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain.
View Article and Find Full Text PDFPathol Int
January 2025
Department of Tumor Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Brown adipose tissue (BAT) is an energy-consuming organ, and its functional dysregulation contributes to the development of metabolic diseases and obesity. BAT function is regulated by the sympathetic nervous system but declines with age, which is partly caused by reduced sympathetic nerve fibers innervating BAT. Thus far, the role of mesenchymal stromal/stem cells in age-related BAT dysfunction remains unknown.
View Article and Find Full Text PDFPurpose: The aim of the current study was to evaluate changes in choroidal circulation hemodynamics after periocular skin warming at 40°C using laser speckle flowgraphy (LSFG).
Methods: Twenty-four right eyes of 24 healthy participants were included. Changes in choroidal circulation hemodynamics were determined using LSFG to evaluate the mean blur rate (MBR) of the macula, which represents choroidal blood flow velocity.
J Nutr Sci Vitaminol (Tokyo)
January 2025
Mental stress is a known risk factor for lifestyle-related diseases. Previously, we reported that short-term stress sharpens the sense of taste and dulls the sense of pungency, but in this study, we examined the effects of chronic mental stress on taste and pungency by comparing normal days with end-of-semester examination days. Furthermore, the relationship between pungency measured on the tongue and the corresponding skin current value causing forearm pain was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!