52.14
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=29104063&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b490852.14
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=pol+iii&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b490852.14
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_67957a1d833721175700f0f2&query_key=1&retmode=xml&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908 Dynamics of Proofreading by the E. coli Pol III Replicase. | LitMetric

Dynamics of Proofreading by the E. coli Pol III Replicase.

Cell Chem Biol

Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea; School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea. Electronic address:

Published: January 2018

The αɛθ core of Escherichia coli DNA polymerase III (Pol III) associates with the β sliding clamp to processively synthesize DNA and remove misincorporated nucleotides. The α subunit is the polymerase while ɛ is the 3' to 5' proofreading exonuclease. In contrast to the polymerase activity of Pol III, dynamic features of proofreading are poorly understood. We used single-molecule assays to determine the excision rate and processivity of the β-associated Pol III core, and observed that both properties are enhanced by mutational strengthening of the interaction between ɛ and β. Thus, the ɛ-β contact is maintained in both the synthesis and proofreading modes. Remarkably, single-molecule real-time fluorescence imaging revealed the dynamics of transfer of primer-template DNA between the polymerase and proofreading sites, showing that it does not involve breaking of the physical interaction between ɛ and β.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2017.09.008DOI Listing

Publication Analysis

Top Keywords

pol iii
16
dna polymerase
8
polymerase proofreading
8
iii
5
dynamics proofreading
4
proofreading e coli
4
pol
4
e coli pol
4
iii replicase
4
replicase αɛθ
4

Similar Publications

Molecular Phylogenetics and Estimation of Evolutionary Divergence and Biogeography of the Family Cordycipitaceae (Ascomycota, Hypocreales).

J Fungi (Basel)

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The Cordycipitaceae family of insecticidal fungi is widely distributed in nature, is the most complex in the order Hypocreales (Ascomycota), with members displaying a diversity of morphological characteristics and insect host ranges. Based on Bayesian evolutionary analysis of five genomic loci(the small subunit of ribosomal RNA (SSU) gene, the large subunit of ribosomal RNA (LSU) gene, the translation elongation factor 1-α () gene, the largest subunit of RNA polymerase II (), and the second largest subunit of RNA polymerase II (), we inferred the divergence times for members of the Cordycipitaceae, improving the internal phylogeny of this fungal family. Molecular clock analyses indicate that the ancestor of occurred in the Paleogene period (34.

View Article and Find Full Text PDF

Objective: Scleroderma-associated autoantibodies (SSc-Abs) are specific in participants (pts) with systemic sclerosis and are associated with organ involvement. Our objective was to assess the influence of baseline SSc-Abs on the trajectories of the clinical outcome assessments (COAs) in a phase III randomized controlled trial.

Methods: We used data on both the groups who received placebo (Pbo) and tocilizumab from the focuSSced trial.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) is one of the most common digestive malignancies. Our previous studies revealed necroptosis-related lncRNA ENSG00000253385.1 was an independent prognostic factor for ESCC.

View Article and Find Full Text PDF

Feedback loop centered on MAF1 reduces blood-brain barrier damage in sepsis-associated encephalopathy.

Cell Mol Biol Lett

January 2025

Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Background: A previous study found that MAF1 homolog, a negative regulator of RNA polymerase III (MAF1), protects the blood-brain barrier (BBB) in sepsis-associated encephalopathy (SAE); however, the related molecular mechanisms remain unclear.

Subjects And Methods: In this study, a rat sepsis model was constructed using the cecum ligation and puncture (CLP) method. In vitro, rat brain microvascular endothelial cells and astrocytes were stimulated with serum from the sepsis model rats.

View Article and Find Full Text PDF

A tale of two strands: Decoding chromatin replication through strand-specific sequencing.

Mol Cell

January 2025

Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!