Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gold nanoparticles are new kinds of nanomaterials. Their large surface-to-volume ratio, stability, excellent biocompatibility, low toxicity and functionality make them very attractive for biomedical applications. Therefore we have analyzed how dendronized gold nanoparticles interact with human alpha-1-microglobulin. This is a glycoprotein of ∼30kDa present in blood plasma and some tissues of the human body. Comparing 3 nanoparticles with different dendronization, we conclude that the effect of a nanoparticle on the structure of alpha-1-microglobulin significantly decreased with second and third generations dendrons as a result of less exposure of the metal cores in the nanoparticles. These interactions indicate weak changes in the immunochemical properties of the protein, whereas the dendron coating had no effect. Thus, dendronization of gold nanoparticles helps to modify their binding properties by shielding them from interactions with plasma proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2017.11.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!