Oxytocin inhibits ox-LDL-induced adhesion of monocytic THP-1 cells to human brain microvascular endothelial cells.

Toxicol Appl Pharmacol

Department of neurology, Danyang People's Hospital of Jiangsu Province, Danyang, Jiangsu 212300, China; Department of neurology, Hongqi Hospital Affiliated to Mudanjiang Medical university, Mudanjiang, Heilongjiang 157000, China. Electronic address:

Published: December 2017

The attachment of monocytes to human brain microvascular endothelial cells (HBMVEs) caused by oxidized low-density lipoprotein (ox-LDL) is associated with an early event and the pathological progression of cerebrovascular diseases. Oxytocin (OT) is a human peptide hormone that is traditionally used as a medication to facilitate childbirth. However, little information is available regarding the physiological function of OT in brain endothelial dysfunction. In the present study, our results indicate that the oxytocin receptor (OTR) was expressed in human brain microvascular endothelial cells (HBMVEs) and was upregulated in response to ox-LDL in a concentration-dependent manner. Notably, OT significantly suppressed ox-LDL-induced attachment of THP-1 monocytes to HBMVEs. Furthermore, we found that OT reduced the expression of adhesion molecules, such as VCAM-1 and E-selectin. Interestingly, it was shown that OT could restore ox-LDL-induced reduction of KLF4 in HBMVEs. Importantly, knockdown of KLF4 abolished the inhibitory effects of OT on ox-LDL-induced expressions of VCAM-1 and E-selectin as well as the adhesion of human monocytic THP-1 cells to endothelial HBMVEs. Mechanistically, we found that the stimulatory effects of OT on KLF4 expression are mediated by the MEK5/MEF2A pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2017.10.022DOI Listing

Publication Analysis

Top Keywords

human brain
12
brain microvascular
12
microvascular endothelial
12
endothelial cells
12
monocytic thp-1
8
thp-1 cells
8
cells hbmves
8
vcam-1 e-selectin
8
cells
5
human
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!