MCPIP1 (Monocyte Chemotactic Protein-1 Induced Protein) is an important regulator of inflammation and cell apoptosis, but its role in UVA-induced stress response in the epidermis has never been studied. We have found that moderate apoptosis-inducing dose of UVA (27J/cm) increases the level of MCPIP1 expression in HaCaT cells and normal human keratinocytes (NHEK) within 6-9h after the treatment. MCPIP1 upregulation was dependent on the induction of p38, but not p53, as demonstrated by using p38 inhibitor SB203580 and p53 inducer RG7388, respectively. This increase was also blocked by antioxidants (α-tocopherol and ascorbic acid), suggesting the involvement of MCPIP1 in UVA-induced oxidative stress response. Si-RNA-mediated down-regulation of MCPIP1 expression in HaCaT cells resulted in increased sensitivity to UVA-induced DNA damage and apoptosis. This was accompanied by decreased phosphorylation of p53 and p38 in MCPIP1-silenced cells following UVA irradiation. The activation of p38 in response to low doses of ultraviolet radiation was postulated to be protective for p53-inactive cells. Therefore, MCPIP1 may favor the survival of p53-defective HaCaT cells by sustaining the activation of p38. This creates a loop of mutual positive regulation between p38 and MCPIP1 protein in HaCaT cells, providing the protection against the consequences of UVA irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mad.2017.11.008 | DOI Listing |
Acta Pharmacol Sin
January 2025
School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
Psoriasis is a chronic, systemic immune-mediated skin disease. Although many new strategies for psoriasis treatment have been developed, there is great need in clinic for treating psoriasis. Gentiopicroside (GPS), derived from Gentiana manshurica Kitagawa, has multiple pharmacological activities including anti-inflammatory, anti-oxidative and antiviral activities.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China. Electronic address:
Ultraviolet B (UVB) irradiation from sunlight is one of the primary environmental factors that causes photodamage to the skin. The aim of this study was to prepare succinyl-chitosan oligosaccharide (SU-COS) and evaluate its protective effects and related molecular mechanisms against UVB-induced photodamage for the first time. SU-COS (substitution degree: 69.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Joint Organization of Jiangxi Clinical Medicine Research Center for Dermatology, Ganzhou 341000, China. Electronic address:
Background: Psoriasis is a chronic inflammatory skin disease regulated by autoimmunity, and pyroptosis plays an important role in this condition. This research sought to examine the function and potential molecular pathway of Gasdermin D (GSDMD) in psoriasis.
Methods: GSDMD expression was examined by immunohistochemistry in biopsied skin tissues from patients with psoriasis.
Biomedicine (Taipei)
December 2024
Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
Introduction: Although the HaCaT keratinocyte model has been used in previous research to study the effects of antipsoriatic agents, there is still a lack of comprehensive understanding of the mechanism of imiquimod (IMQ)-induced proliferation and signal transduction in psoriasis-like keratinocytes.
Objectives: This study aimed to investigate the molecular mechanisms and pathways associated with psoriasis-like inflammation caused by IMQ in human keratinocytes.
Materials And Methods: HaCaT cells were exposed to different concentrations of IMQ to induce inflammation similar to that observed in psoriasis.
Pharmaceutics
November 2024
Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil.
Background: Photodynamic therapy (PDT) is a treatment modality that uses light to activate a photosensitizing agent, destroying target cells. The growing awareness of the necessity to reduce or eliminate the use of mammals in research has prompted the search for safer toxicity testing models aligned with the new global guidelines and compliant with the relevant regulations.
Objective: The objective of this study was to assess the impact of PDT on alternative models to mammals, including in vitro three-dimensional (3D) cultures and in vivo, in invertebrate animals, utilizing a potent photosensitizer, 2-hydroxychalcone.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!