Purpose: There has been increased interest in the role of the posterior bundle of the medial collateral ligament (pMUCL) in the elbow, particularly its effects on posteromedial rotatory stability. The ligament's effect in the context of an unfixable coronoid fracture has not been the focus of any study. The purposes of this biomechanical study were to evaluate the stabilizing effect of the pMUCL with a transverse coronoid fracture and to assess the effect of graft reconstruction of the ligament.
Methods: We simulated a varus and internal rotatory subluxation in 7 cadaveric elbows at 30°, 60°, and 90° elbow flexion. The amount of ulnar rotation and medial ulnohumeral joint gapping were assessed in the intact elbow after we created a transverse coronoid injury, after we divided the pMUCL, and finally, after we performed a graft reconstruction of the pMUCL.
Results: At all angles tested, some stability was lost after cutting the pMUCL once the coronoid had been injured, because mean proximal ulnohumeral joint gapping increased afterward by 2.1, 2.2, and 1.3 mm at 90°, 60°, and 30°, respectively. Ulnar internal rotation significantly increased after pMUCL transection at 90°. At 60° and 30° elbow flexion, ulnar rotation increased after resection of the coronoid but not after pMUCL resection.
Conclusions: An uninjured pMUCL stabilizes against varus internal rotatory instability in the setting of a transverse coronoid fracture at higher flexion angles. Further research is needed to optimize graft reconstruction of the pMUCL.
Clinical Relevance: The pMUCL is an important secondary stabilizer against posteromedial instability in the coronoid-deficient elbow. In the setting of an unfixable coronoid fracture, the surgeon should examine for posteromedial instability and consider addressing the pMUCL surgically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhsa.2017.09.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!