Rat liver S-adenosylhomocysteinase, a homotetramer, was resolved by treatment with acid ammonium sulfate into apoenzyme and NAD. The apoenzyme thus prepared retained a tetrameric structure but differed in the mobility on nondenaturing polyacrylamide gel electrophoresis. The inactive apoenzyme was reactivated upon incubation with NAD. The restoration of activity paralleled with the tight binding of NAD to apoenzyme, and full activity was obtained when 4 mol of NAD were bound per mol of apoenzyme. The kinetics of reconstitution were apparently biphasic and suggest the existence of two conformers in a slow equilibrium, one of which binds the coenzyme rapidly while the other does so very slowly, if at all. In addition to NAD, apoadenosylhomocysteinase tightly bound nicotinamide hypoxanthine dinucleotide, 3-acetylpyridine adenine dinucleotide and nicotinic acid-adenine dinucleotide. NADP was not bound. Catalytic activity was found only with the enzyme reconstituted with NAD or nicotinamide hypoxanthine dinucleotide. The spectral change observed on interaction of apoadenosylhomocysteinase with NAD was similar to those seen with adenine nucleotides, and was largely approximated by the addition of dioxane to aqueous solutions of adenine nucleotides. By comparison of the difference spectra, it is suggested that the adenine portion of the coenzyme is bound in the hydrophobic pocket of the protein, and that the binding is accompanied by perturbation of tryptophan residue of the protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0167-4838(89)90157-x | DOI Listing |
EXCLI J
November 2024
Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.
Farnesol (FAR) is a sesquiterpene alcohol that exists in many fruits and vegetables and possesses promising anti-inflammatory and antioxidant activities. Cadmium (Cd) is an environmental pollutant known for its serious health effects. Liver injury associated with oxidative stress is a hazardous consequence of exposure to Cd.
View Article and Find Full Text PDFMany of the 'hallmarks of aging' involve alterations in cellular and organismal metabolism. One pathway with the potential to impact several traditional markers of impaired function with aging is the PI3K/AKT metabolic pathway. Regulation of this pathway includes many aspects of cellular function, including protein synthesis, proliferation and survival, as well as many downstream targets, including mTOR and FOXOs.
View Article and Find Full Text PDFBackground: Recent reports suggest increased myocardial iNOS expression leads to excessive protein -nitrosylation, contributing to the pathophysiology of HFpEF. However, the relationship between NO bioavailability, dynamic regulation of protein -nitrosylation by trans- and de-nitrosylases, and HFpEF pathophysiology has not been elucidated. Here, we provide novel insights into the delicate interplay between NO bioavailability and protein -nitrosylation in HFpEF.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
Acute rejection (AR) is a significant complication in liver transplantation, impacting graft function and patient survival. Kupffer cells (KCs), liver-specific macrophages, can polarize into pro-inflammatory M1 or anti-inflammatory M2 phenotypes, both of which critically influence AR outcomes. Angiopoietin-like 4 (ANGPTL4), a secretory protein, is recognized for its function in regulating inflammation and macrophage polarization.
View Article and Find Full Text PDFGen Comp Endocrinol
January 2025
Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
Cytochrome P450 17A1 (CYP17A1) catalyzes two enzymatic reactions in the biosynthesis of dehydroepiandrosterone (DHEA) from pregnenolone. In pregnant humans, the adrenal gland is responsible for DHEA biosynthesis, which is then sulfated by SULT2A1 and released into the bloodstream. This sulfated DHEA is subsequently taken up by the placenta and deconjugated to serve as a precursor for estrogen biosynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!