Numeric simulation model for long-term orthodontic tooth movement with contact boundary conditions using the finite element method.

Am J Orthod Dentofacial Orthop

Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.

Published: November 2017

Introduction: Although many attempts have been made to simulate orthodontic tooth movement using the finite element method, most were limited to analyses of the initial displacement in the periodontal ligament and were insufficient to evaluate the effect of orthodontic appliances on long-term tooth movement. Numeric simulation of long-term tooth movement was performed in some studies; however, neither the play between the brackets and archwire nor the interproximal contact forces were considered. The objectives of this study were to simulate long-term orthodontic tooth movement with the edgewise appliance by incorporating those contact conditions into the finite element model and to determine the force system when the space is closed with sliding mechanics.

Methods: We constructed a 3-dimensional model of maxillary dentition with 0.022-in brackets and 0.019 × 0.025-in archwire. Forces of 100 cN simulating sliding mechanics were applied. The simulation was accomplished on the assumption that bone remodeling correlates with the initial tooth displacement.

Results: This method could successfully represent the changes in the moment-to-force ratio: the tooth movement pattern during space closure.

Conclusions: We developed a novel method that could simulate the long-term orthodontic tooth movement and accurately determine the force system in the course of time by incorporating contact boundary conditions into finite element analysis. It was also suggested that friction is progressively increased during space closure in sliding mechanics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajodo.2017.03.021DOI Listing

Publication Analysis

Top Keywords

tooth movement
28
orthodontic tooth
16
finite element
16
long-term orthodontic
12
conditions finite
12
numeric simulation
8
tooth
8
contact boundary
8
boundary conditions
8
element method
8

Similar Publications

Proper alignment of the teeth not only aids in functional occlusion but also promotes harmonious gingival contours, potentially reducing the risk of inflammation and gingival recession. This case series aimed to evaluate the effectiveness of optimizing axial inclination through clear aligner orthodontic treatment in addressing gingival recession defects. This case series included nine patients, aged 20-36 years, who presented with varying degrees of gingival recession on 12 mandibular incisors.

View Article and Find Full Text PDF

Aim: This study intended to comprehend the effects of injectable platelet-rich fibrin (i-PRF) on anchor loss and space closure rates during the retraction phase of orthodontic treatment.

Materials And Methods: Twenty-four participants with malocclusion, necessitating extractions and space closure during orthodontic treatment, were enrolled and divided into two groups ( = 12 participants) group A: the experimental group was administered i-PRF on the maxilla/mandible, while group B: the control group did not. Measurements of the rate of space closure, anchor loss, and salivary enzyme activity were done before retraction (T0), after three weeks (T1), after six weeks (T2), and after nine weeks (T3).

View Article and Find Full Text PDF

Inflammation alters the expression and activity of the mechanosensitive ion channels in periodontal ligament cells.

Eur J Orthod

December 2024

Division of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, the University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.

Background: Periodontal ligament cells (PDLCs) possess mechanotransduction capability, vital in orthodontic tooth movement (OTM) and maintaining periodontal homeostasis. The study aims to elucidate the expression profiles of mechanosensitive ion channel (MIC) families in PDLCs and how the inflammatory mediator alters their expression and function, advancing the understanding of the biological process of OTM.

Methods And Methods: Human PDLCs were cultured and exposed to TNF-α.

View Article and Find Full Text PDF

Although the modulus of elasticity of the human periodontal ligament (E) values used in dentistry widely ranged from 0.01 to 175 MPa, the exact E value has not been determined. This study aimed to verify whether and how E values affect the stress distribution over the tooth and periodontium structures, and to determine the appropriate E range.

View Article and Find Full Text PDF

Objective:  The mechanical stimulation known as orthodontic mechanical force (OMF) causes biological reactions in orthodontic tooth movement (OTM). Heat shock protein-70 (HSP-70) needs pro-inflammatory cytokines to trigger bone resorption in OTM; nevertheless, heat shock protein-10 (HSP-10), a "Alarmin" cytokine, should control these pro-inflammatory cytokines to get the best alveolar bone remodeling (ABR). L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!