High-throughput genotyping of Swiss bread wheat and spelt accessions revealed differences in their gene pools and identified bread wheat landraces that were not used in breeding. Genebanks play a pivotal role in preserving the genetic diversity present among old landraces and wild progenitors of modern crops and they represent sources of agriculturally important genes that were lost during domestication and in modern breeding. However, undesirable genes that negatively affect crop performance are often co-introduced when landraces and wild crop progenitors are crossed with elite cultivars, which often limit the use of genebank material in modern breeding programs. A detailed genetic characterization is an important prerequisite to solve this problem and to make genebank material more accessible to breeding. Here, we genotyped 502 bread wheat and 293 spelt accessions held in the Swiss National Genebank using a 15K wheat SNP array. The material included both spring and winter wheats and consisted of old landraces and modern cultivars. Genome- and sub-genome-wide analyses revealed that spelt and bread wheat form two distinct gene pools. In addition, we identified bread wheat landraces that were genetically distinct from modern cultivars. Such accessions were possibly missed in the early Swiss wheat breeding program and are promising targets for the identification of novel genes. The genetic information obtained in this study is appropriate to perform genome-wide association studies, which will facilitate the identification and transfer of agriculturally important genes from the genebank into modern cultivars through marker-assisted selection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-017-3010-5DOI Listing

Publication Analysis

Top Keywords

bread wheat
24
modern cultivars
12
swiss bread
8
wheat
8
wheat spelt
8
spelt accessions
8
gene pools
8
identified bread
8
wheat landraces
8
landraces wild
8

Similar Publications

There is growing interest in low-temperature food processing. In the baking industry, low-temperature fermentation improves the production of natural aroma compounds, which have a positive impact on the sensory profile of the final product. The aim of this study was to develop a yeast-lactic acid bacteria starter culture that effectively ferments wheat dough at a temperature of 15 °C.

View Article and Find Full Text PDF

Digestion of gluten-derived immunogenic peptides along the gastrointestinal tract of the growing pig as a model for the adult human is enhanced with simultaneous consumption of exogenous proteases.

J Nutr

January 2025

Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4474, New Zealand; Smart Foods and Bioproducts, AgResearch Limited, Te Ohu Rangahau Kai Facility, Palmerston North 4474, New Zealand. Electronic address:

Background And Aims: Digestion of gluten-derived immunogenic peptides along the gastrointestinal tract (GIT) is not well established. This study aimed to map the digestion of gluten-derived immunogenic peptides along the GIT using the growing pig as a human adult model, and actinidin as a model exogenous protease.

Methods: Entire male pigs 9 weeks of age (n=54, 19.

View Article and Find Full Text PDF

Impact of structural variations and genome partitioning on bread wheat hybrid performance.

Funct Integr Genomics

January 2025

INRAE, Genetics, Diversity and Ecophysiology of Cereals, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.

The agronomical interest of hybrid wheat has long been a matter of debate. Compared to maize where hybrids have been successfully grown for decades, the mixed results obtained in wheat have been attributed at least partially to the lack of heterotic groups. The wheat genome is known to be strongly partitioned and characterized by numerous presence/absence variations and alien introgressions which have not been thoroughly considered in hybrid breeding.

View Article and Find Full Text PDF

Wheat (Triticum aestivum L.) is one of the most important cereal crops, with its grain serving as a predominant staple food source on a global scale. However, there are many biotic and abiotic stresses challenging the stability of wheat production.

View Article and Find Full Text PDF

Genetic dissection of flag leaf morphology traits and fine mapping of a novel QTL (Qflw.sxau-6BL) in bread wheat (Triticum aestivum L.).

Theor Appl Genet

January 2025

Institute of Wheat Research, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province) Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Linfen, China.

Total 60-QRC for FLM traits were detected by meta-genomics analysis, nine major and stable QTL identified by DH population and validated, and a novel QTL  Qflw.sxau-6BL was fine mapped. The flag leaf is an "ideotypic" morphological trait providing photosynthetic assimilates in wheat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!