The calcium apatite minerals are among the most studied in the biomaterial field because of their similarity with the mineral phase of bone tissues, which is mainly the hexagonal polymorph of hydroxylapatite. Given the growing interest both in the microscopic processes governing the behaviour of these natural biomaterials and in recent experimental methods to investigate the Raman response of hydroxylapatite upon mechanical loading, we report in the present work a detailed quantum mechanical analysis by DFT/B3LYP-D* approach on the Raman and infrared responses of hydroxylapatite upon deformation of its unit cell. From the vibrational results, the piezo-spectroscopic components Δν = Πσ were calculated. For the first time to the authors' knowledge quantum mechanics (QM) was applied to resolve the piezo-spectroscopic response of hydroxylapatite. The QM results on the uniaxial stress responses of this phase on the piezo-spectroscopic components Π and Π of the symmetric P-O stretching mode were 2.54 ± 0.09cm/GPa and 2.56 ± 0.06cm/GPa, respectively (Raman simulation) and 2.48 ± 0.15cm/GPa and Π = 2.74 ± 0.08cm/GPa, respectively, of the asymmetric P-O stretching (infrared spectroscopy simulation). These results are in excellent agreement with previous experimental data reported in literature. The quantum mechanical analysis of the other vibrational bands (not present in literature) shed more light on this new and very important application of both Raman and IR spectroscopies and extend the knowledge of the behaviour of hydroxylapatite, suggesting and addressing further experimental research and analytic strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2017.10.029 | DOI Listing |
Acta Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Faculty of Electrical Engineering, Czestochowa University of Technology, 17 Al. Armii Krajowej, Częstochowa, PL-42200, Poland.
We report a complete set of elastic, piezooptic and photoelastic tensor constants of scheelite crystals CaMoO, BaMoO, BaWO and PbWO determined by density functional theory (DFT) calculations using the quantum chemical software package CRYSTAL17. The modulation parameter, i.e.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala, 686101, India.
This computational study investigated the catalytic efficiency of novel RhCp complexes (X = CF, SiF, CCl, SOH) in [3 + 2] azide-alkyne cycloaddition reactions density functional theory (MN12-L/Def2-SVP). Through quantum mechanical approaches, we explore the impact of different substituents on the Cp* ligand on the mechanism, selectivity, and reactivity of these Rh-based catalysts. Non-covalent interaction (NCI) and reduced density gradient (RDG) analyses, along with frontier molecular orbital (FMO) and Hirshfeld atomic charge analyses, were utilized to assess ligand stability and catalytic performance.
View Article and Find Full Text PDFFront Artif Intell
January 2025
Alma Sistemi Srl, Rome, Italy.
This study explores the evolving role of social media in the spread of misinformation during the Ukraine-Russia conflict, with a focus on how artificial intelligence (AI) contributes to the creation of deceptive war imagery. Specifically, the research examines the relationship between color patterns (LUTs) in war-related visuals and their perceived authenticity, highlighting the economic, political, and social ramifications of such manipulative practices. AI technologies have significantly advanced the production of highly convincing, yet artificial, war imagery, blurring the line between fact and fiction.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China.
Transparent wood with high transmittance and versatility has attracted great attention as an energy-saving building material. Many studies have focused on luminescent transparent wood, while the research on organic afterglow transparent wood is an interesting combination. Here, we use luminescent difluoroboron β-diketonate (BFbdk) compounds, methyl methacrylate (MMA), delignified wood, and initiators to prepare room-temperature phosphorescent transparent wood by thermal initiation polymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!