AI Article Synopsis

Article Abstract

In this study, we explore how people integrate risks of assets in a simulated financial market into a judgment of the conjunctive risk that all assets decrease in value, both when assets are independent and when there is a systematic risk present affecting all assets. Simulations indicate that while mental calculation according to naïve application of probability theory is best when the assets are independent, additive or exemplar-based algorithms perform better when systematic risk is high. Considering that people tend to intuitively approach compound probability tasks using additive heuristics, we expected the participants to find it easiest to master tasks with high systematic risk - the most complex tasks from the standpoint of probability theory - while they should shift to probability theory or exemplar memory with independence between the assets. The results from 3 experiments confirm that participants shift between strategies depending on the task, starting off with the default of additive integration. In contrast to results in similar multiple cue judgment tasks, there is little evidence for use of exemplar memory. The additive heuristics also appear to be surprisingly context-sensitive, with limited generalization across formally very similar tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cognition.2017.10.023DOI Listing

Publication Analysis

Top Keywords

systematic risk
16
probability theory
12
judgment tasks
8
risk assets
8
assets independent
8
additive heuristics
8
exemplar memory
8
tasks
6
assets
6
risk
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!