Objectives: This multicenter pragmatic investigation assessed outcomes following clinical implementation of CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention (PCI).

Background: CYP2C19 loss-of-function alleles impair clopidogrel effectiveness after PCI.

Methods: After clinical genotyping, each institution recommended alternative antiplatelet therapy (prasugrel, ticagrelor) in PCI patients with a loss-of-function allele. Major adverse cardiovascular events (defined as myocardial infarction, stroke, or death) within 12 months of PCI were compared between patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy. Risk was also compared between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy. Cox regression was performed, adjusting for group differences with inverse probability of treatment weights.

Results: Among 1,815 patients, 572 (31.5%) had a loss-of-function allele. The risk for major adverse cardiovascular events was significantly higher in patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy (23.4 vs. 8.7 per 100 patient-years; adjusted hazard ratio: 2.26; 95% confidence interval: 1.18 to 4.32; p = 0.013). Similar results were observed among 1,210 patients with acute coronary syndromes at the time of PCI (adjusted hazard ratio: 2.87; 95% confidence interval: 1.35 to 6.09; p = 0.013). There was no difference in major adverse cardiovascular events between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy (adjusted hazard ratio: 1.14; 95% confidence interval: 0.69 to 1.88; p = 0.60).

Conclusions: These data from real-world observations demonstrate a higher risk for cardiovascular events in patients with a CYP2C19 loss-of-function allele if clopidogrel versus alternative therapy is prescribed. A future randomized study of genotype-guided antiplatelet therapy may be of value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775044PMC
http://dx.doi.org/10.1016/j.jcin.2017.07.022DOI Listing

Publication Analysis

Top Keywords

loss-of-function allele
36
patients loss-of-function
20
alternative therapy
20
antiplatelet therapy
16
cardiovascular events
16
genotype-guided antiplatelet
12
major adverse
12
adverse cardiovascular
12
versus alternative
12
adjusted hazard
12

Similar Publications

Sequence analysis of the 5' region of the chymotrypsin C (CTRC) gene in chronic pancreatitis.

Pancreatology

January 2025

Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Translational Pancreatology Research Group, Szeged, Hungary. Electronic address:

Background/objectives: Loss-of-function chymotrypsin C (CTRC) variants increase the risk for chronic pancreatitis (CP) by reducing protective pancreatic CTRC activity. Variants in the 5' upstream region that includes the promoter might affect CTRC expression but have not been investigated to date. The aim of the present study was to address this knowledge gap.

View Article and Find Full Text PDF

SUMOylation involves covalent attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on target proteins and regulates various aspects of their function. Sentrin-specific proteases (SENPs) are key players in both the conjugation reaction of SUMO proteins to their targets and the subsequent deconjugation of SUMO-conjugated substrates. Here, we provide the first comprehensive prenatal description of a lethal syndrome linked to a novel homozygous stop-gain variant in SENP7 c.

View Article and Find Full Text PDF

Functional analysis of non-coding variants associated with congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice in less than two weeks. We use this technology to examine and measure the gain- and loss-of-function effects of enhancer variants previously linked to limb polydactyly, autism spectrum disorder, and craniofacial malformation.

View Article and Find Full Text PDF

Foxm1 promotes differentiation of neural progenitors in the zebrafish inner ear.

Dev Biol

January 2025

Biology Department, Texas A&M University, College Station, TX 7843-3258. Electronic address:

During development of the vertebrate inner ear, sensory epithelia and neurons of the statoacoustic ganglion (SAG) arise from lineage-restricted progenitors that proliferate extensively before differentiating into mature post-mitotic cell types. Development of progenitors is regulated by Fgf, Wnt and Notch signaling, but how these pathways are coordinated to achieve an optimal balance of proliferation and differentiation is not well understood. Here we investigate the role in zebrafish of Foxm1, a transcription factor commonly associated with proliferation in developing tissues and tumors.

View Article and Find Full Text PDF

Here, we present a protocol to alter the production of alternatively spliced mRNA variants, without affecting the overall gene expression, through CRISPR-Cas9-engineered genomic mutations in mice. We describe steps for designing guide RNA to direct Cas9 endonuclease to consensus splice sites, producing transgenic mice through pronuclear injection, and screening for desired mutations in cultured mammalian cells using a minigene splicing reporter. Splice isoform-specific mouse mutants provide valuable tools for genetic analyses beyond loss-of-function and transgenic alleles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!