Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.

Cell Syst

Department of Genetics, University of North Carolina, Chapel Hill, Genetic Medicine Building 5061, CB#7264, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA; Curriculum for Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599-7264, USA. Electronic address:

Published: November 2017

Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700845PMC
http://dx.doi.org/10.1016/j.cels.2017.09.015DOI Listing

Publication Analysis

Top Keywords

dna damage
36
cell cycle
12
damage
9
damage checkpoint
8
cell-cycle arrest
8
dna
8
response dna
8
damage checkpoints
8
orchestration dna
4
checkpoint dynamics
4

Similar Publications

Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.

Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.

View Article and Find Full Text PDF

Infertility affects 10-15% of couples worldwide, with male factors accounting for half of cases. Environmental, behavioral, and genetic problems contribute to spermatogenic failure in 30% of idiopathic male infertility cases. Other factors, such as oxidative stress (OS), cause impaired spermatogenesis, abnormal sperm morphology, and reduced motility, eventually triggering male infertility.

View Article and Find Full Text PDF

Purpose: More active high-dose chemotherapy (HDC) regimens are needed for autologous stem-cell transplantation (ASCT) for refractory lymphomas. Seeking HDC enhancement with a poly(ADP-ribose) polymerase (PARP) inhibitor, we observed marked synergy between olaparib and vorinostat/gemcitabine/busulfan/melphalan (GemBuMel) against lymphoma cell lines, mediated by inhibition of DNA damage repair. Our preclinical work led us to clinically study olaparib/vorinostat/GemBuMel with ASCT.

View Article and Find Full Text PDF

Loss of HNRNPK During Cell Senescence Linked to Reduced Production of CDC20.

Mol Cell Biol

January 2025

Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA.

Cellular senescence is a complex biological response to sublethal damage. The RNA-binding protein HNRNPK was previously found to decrease prominently during senescence in human diploid fibroblasts. Here, analysis of the mechanisms leading to reduced HNRNPK abundance revealed that in cells undergoing senescence, mRNA levels declined transcriptionally and full-length HNRNPK protein was progressively lost, while the abundance of a truncated HNRNPK increased.

View Article and Find Full Text PDF

Discovery of WDR5-MLL1 and HDAC Dual-Target Inhibitors for the Treatment of Acute Myeloid Leukemia.

J Med Chem

January 2025

Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.

Targeting the WDR5-MLL1 protein-protein interaction (PPI) is considered to be an effective approach for the treatment of MLL-rearranged leukemia. However, interfering with WDR5-MLL1 PPI reduces methylated H3K4 levels and induces a decline in acetylated H3 levels, which may contribute to the suboptimal cellular efficacy of WDR5 inhibitors. We observed that cotreatment with WDR5-MLL1 PPI and HDAC inhibitors augmented the antiproliferative effect in MV-4-11 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!