Objectives: The aim of the study was to compare the retentive behaviors of double crowns with different designs and material compositions before and after artificial aging.
Materials And Methods: Six pairs of double crowns were fabricated: telescopic crowns 0° made of high-noble metal (group A) or non-precious metal (group B), telescopic zirconia copings with secondary crowns made of electroplated gold 2° (group C), crowns with friction pins 2° made of non-precious metal (group D) or zirconia (group E), and conical crowns 6° made of high-noble metal (group F). Retention forces were assessed before and after artificial aging, and after axial and non-axial loading.
Results: Initially, specimens in group D (13.9 N), B (12.5 N), and E (12.2 N) exhibited the highest retention forces. Retention forces in groups A (9.6 N), C (7.4 N), and F (6.0 N) were statistically significantly lower than those of the other groups (p < 0.05). After artificial aging, double crowns with additional retention elements exhibited the highest retention forces. The largest retention force losses were evident in groups A (70%), B (64%), C (39%), and F (47%).
Conclusions: Double crowns with different designs and made of different materials exhibited different retention forces and different long-term retentive behavior. The highest retention force losses were evident in double crowns with more extended surface contact, such as telescopic crowns.
Clinical Significance: Telescopic crowns with additional retention elements were more resistant to wearing than double crowns without additional retention elements. An additional clinical benefit might be the quick and easy possibility of enhancing retention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00784-017-2224-x | DOI Listing |
Methods Cell Biol
January 2025
T Cell Lymphoma Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain. Electronic address:
T cell lymphoma constitutes a complex group of diseases, characterized by heterogeneous molecular features and clinical symptoms, and a dismal outcome no matter the therapeutic strategy chosen. In an attempt to improve patients' survival chances, treatment combinations (chemotherapy, radiotherapy, immunotherapy, gene therapy and thermotherapy) have been tested for their synergistic effects that may dramatically improve outcomes and reduce the side effects of each single modality treatment when therapeutic effects add up while side effects are distributed. In this context, nanoscale drug delivery agents have been developed and exploited to enhance the release of drugs in the treatment of several diseases, showing potential benefits in terms of pharmaceutical flexibility, selectivity, dose reduction and minimization of adverse effects.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Institute for Advanced Study (IAS), College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China. Electronic address:
Background: Alzheimer's disease (AD) is a neurodegenerative disorder with a very long duration, posing a serious threat to people's life and health. To date, no medicine that can cure or reverse the disease has been developed or reported, so early diagnosis and timely intervention are essential. The concentration of Phosphorylated tau181 (P-tau181) in blood has been approved by FDA as a standard for assisting clinical diagnosis of AD.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
To realize the comprehensive utilization of large amounts of high-ash coal slime and comprehensively understand the excellent performance of nutrient release and lead and cadmium adsorption of high-ash coal slime silicon composite materials, green and safe mild hydrothermal conditions (200 °C) were used to prepare the rich-rich coal slime. Zeolite/tobermorite composites (Z-TOBs) were used in this study. Batch adsorption tests and repeated extraction tests were used to determine whether silicon, potassium, and calcium nutrients of Z-TOBs have sustained release properties and are affected by pH.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China. Electronic address:
Traditionally, abiotic factors such as pH, temperature, and initial Cr(VI) concentration have been undoubtedly recognized as the external driving forces that dramatically affect the microbial-mediated remediation of Cr(VI) pollutants. However, concentrating on whether and how the biological behaviors and metabolic activities drive the microbial-mediated Cr(VI) detoxification is a study-worthy but little-known issue. In this study, Leucobacter chromiireducens CD49 isolated from heavy-metal-contaminated soil was identified to tolerate 8000.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.
Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!