Sexual dimorphism in oxidant-induced adaptive homeostasis in multiple wild-type D. melanogaster strains.

Arch Biochem Biophys

Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 00089-0191, USA,; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA. Electronic address:

Published: December 2017

AI Article Synopsis

  • Sexual dimorphism refers to the physical and reproductive differences between males and females across various species, which may influence survival and chronic disease variations.
  • The study investigated whether sex-specific adaptive responses to oxidative stress are seen in wild-type strains of the fruit fly Drosophila melanogaster, similar to previous findings in hybrid strains.
  • Results showed that different oxidative agents triggered distinct adaptive responses based on sex, indicating that considering sex as a biological variable is crucial in scientific research and toxicology.

Article Abstract

Sexual dimorphism includes the physical and reproductive differences between the sexes, including differences that are conserved across species, ranging from the common fruit fly, Drosophila melanogaster, to humans. Sex-dependent variations in adaptive homeostasis, and adaptive stress responses may offer insight into the underlying mechanisms for male and female survival differences and into differences in chronic disease incidence and severity in humans. Earlier work showed sex-specific differences in adaptive responses to oxidative stressors in hybrid laboratory strains of D. melanogaster. The present study explored whether this phenomenon is also observed in wild-type D. melanogaster strains Oregon-R (Or-R) and Canton-S (Ca-S), as well as the common mutant reference strain w[1118], in order to better understand whether such findings are descriptive of D. melanogaster in general. Flies of each strain were pretreated with non-damaging, adaptive concentrations of hydrogen peroxide (HO) or of different redox cycling agents (paraquat, DMNQ, or menadione). Adaptive homeostasis, and changes in the expression of the Proteasome and overall cellular proteasomal proteolytic capacity were assessed. Redox cycling agents exhibited a male-specific adaptive response, whereas HO exposure provoked female-specific adaptation. These findings demonstrate that different oxidants can elicit sexually dimorphic adaptive homeostatic responses in multiple fly strains. These results (and those contained in a parallel study [1]) highlight the need to address sex as a biological variable in fundamental science, clinical research, and toxicology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508965PMC
http://dx.doi.org/10.1016/j.abb.2017.10.021DOI Listing

Publication Analysis

Top Keywords

adaptive homeostasis
12
sexual dimorphism
8
adaptive
8
wild-type melanogaster
8
melanogaster strains
8
redox cycling
8
cycling agents
8
melanogaster
5
differences
5
dimorphism oxidant-induced
4

Similar Publications

Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (T) compartment in the meninges.

View Article and Find Full Text PDF

The immune landscape of fetal chorionic villous tissue in term placenta.

Front Immunol

January 2025

Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States.

Introduction: The immune compartment within fetal chorionic villi is comprised of fetal Hofbauer cells (HBC) and invading placenta-associated maternal monocytes and macrophages (PAMM). Recent studies have characterized the transcriptional profile of the first trimester (T1) placenta; however, the phenotypic and functional diversity of chorionic villous immune cells at term (T3) remain poorly understood.

Methods: To address this knowledge gap, immune cells from human chorionic villous tissues obtained from full-term, uncomplicated pregnancies were deeply phenotyped using a combination of flow cytometry, single-cell RNA sequencing (scRNA-seq, CITE-seq) and chromatin accessibility profiling (snATAC-seq).

View Article and Find Full Text PDF

The secretory function of adipose tissues in metabolic regulation.

Life Metab

April 2024

Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China.

In addition to their pivotal roles in energy storage and expenditure, adipose tissues play a crucial part in the secretion of bioactive molecules, including peptides, lipids, metabolites, and extracellular vesicles, in response to physiological stimulation and metabolic stress. These secretory factors, through autocrine and paracrine mechanisms, regulate various processes within adipose tissues. These processes include adipogenesis, glucose and lipid metabolism, inflammation, and adaptive thermogenesis, all of which are essential for the maintenance of the balance and functionality of the adipose tissue micro-environment.

View Article and Find Full Text PDF

The characteristics of aminotransferases gene family in Ruditapes philippinarum and its response to salinity stresses.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.

Aminotransferase is involved in the regulation of amino acid metabolism, which can affect the balance and distribution of amino acids in the organism, help maintain the homeostasis of amino acids in the organism, and play an important role in the environmental adaptation of aquatic animals. In this study, a total of 28 aminotransferase genes were identified in the genome of R. philippinarum.

View Article and Find Full Text PDF

The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!