Chitin synthesis by Chlorella cells infected by chloroviruses: Enhancement by adopting a slow-growing virus and treatment with aphidicolin.

J Biosci Bioeng

Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima 739-8530, Japan. Electronic address:

Published: March 2018

Chlorella viruses or chloroviruses contain a gene that encodes an enzyme that catalyzes chitin synthesis. This gene is expressed early in viral infections to produce chitin on the outside of the Chlorella cell wall. Interestingly, chitin synthesis by microalgal Chlorella cells in combination with chloroviruses represents a unique eco-friendly process for converting solar energy and CO into useful materials. However, during the final viral infection stage, the host cells are completely lysed, so chitin should be harvested before cells lyse. To increase chitin yields, slow-growing chlorovirus isolates were adopted and the viral replication process was modified with an inhibitor of DNA synthesis. The accumulation of chitin on the surface of Chlorella cells infected with one of nine chlorovirus isolates carrying the chitin synthase gene was compared with that of CVK2 (a standard virus)-infected cells. Chlorella cells infected with CVNF-1 (a slow-growing virus) accumulated chitin over the entire cell surface within 15 min post-infection (p.i.), and chitin continued to accumulate for up to 8 h p.i. before cells lysed. This was 2-fold longer than the chitin-accumulation period for cells infected with CVK2. The addition of aphidicolin delayed the progression of the virus replication cycle and extended the chitin-accumulation period of CVNF-1-infected cells to 12 h p.i. before cells lysed. Additionally, chitin production in the aphidicolin-treated CVNF-1-infected cells was approximately 6-fold higher than in CVK2-infected cells not treated with aphidicolin. Thus, chitin synthesis in a Chlorella-virus system may be prolonged by using slow-growing viral isolates treated with aphidicolin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2017.10.002DOI Listing

Publication Analysis

Top Keywords

chitin synthesis
16
chlorella cells
16
cells infected
16
cells
13
chitin
12
slow-growing virus
8
chlorovirus isolates
8
cells lysed
8
chitin-accumulation period
8
cvnf-1-infected cells
8

Similar Publications

This current study has been carried out to investigate the angiogenic potential and in silico studies of designed thermoplastic polyurethanes (PU) for biomedical potential. For this purpose, curcumin based thermoplastic polyurethanes has been synthesized by two step methodology. Different characterization techniques such as FTIR, solid state HNMR, CNMR and XRD were used to confirm the synthesis of designed thermoplastic polyurethanes.

View Article and Find Full Text PDF

Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.

Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.

View Article and Find Full Text PDF

Eco-Friendly Fabrication of FeS QD-Chitosan Biopolymer Composites: Green Synthetic Approach.

Biopolymers

March 2025

Department of Chemistry, School of Chemical and Physical Sciences, Lovely Professional University, Phagwara, India.

In this paper, we offer a unique green synthetic approach for producing iron sulfide quantum dots (FeS QD)-chitosan composites using gel chemistry. The technique uses the environmental features of chitosan, a biocompatible and biodegradable polysaccharide, and the excellent electrical properties of FeS QDs. By sustainable chemistry principles, the synthesis process is carried out under gentle settings, using aqueous solutions and avoiding hazardous solvents and strong chemicals.

View Article and Find Full Text PDF

Breast cancer ranks as the second leading reason of cancer mortality among females globally, emphasizing the critical need for novel anticancer treatments. In current work, berberine-zinc oxide conjugated chitosan nanoparticles were synthesized and characterized using various characterization techniques. The cytotoxic effects of CS-ZnO-Ber NPs on MCF-7 cells were assessed using the MTT assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!