Background: Recent ultrasound studies found increased passive muscle stiffness and no difference in tendon stiffness in highly impaired children and young adults with cerebral palsy. However, it is not known if muscle and tendon mechanical properties are already altered in highly functional children with cerebral palsy. Therefore, the purpose of this study was to compare the mechanical and material properties of the plantar flexors in highly functional children with cerebral palsy and typically developing children.
Methods: Besides strength measurements, ultrasonography was used to assess gastrocnemius medialis and Achilles tendon elongation and stiffness, Achilles tendon stress, strain, and Young's modulus in twelve children with cerebral palsy (GMFCS levels I and II) and twelve typically developing peers during passive dorsiflexion rotations as well as maximum voluntary contractions.
Findings: Despite no difference in ankle joint stiffness (P>0.05) between groups, passive but not active Achilles tendon stiffness was significantly decreased (-39%) and a tendency of increased passive muscle stiffness was observed even in highly functional children with cerebral palsy. However, material properties of the tendon were not altered. Maximum voluntary contraction showed reduced plantar flexor strength (-48%) in the cerebral palsy group.
Interpretation: Even in children with mild spastic cerebral palsy, muscle and tendon mechanical properties are altered. However, it appears that the Achilles tendon stiffness is different only when low forces act on the tendon during passive movements. Although maximum voluntary force is already decreased, forces acting on the Achilles tendon during activity appear to be sufficient to maintain typical material properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinbiomech.2017.10.019 | DOI Listing |
Pediatr Res
January 2025
Discipline of Paediatrics, Trinity College, the University of Dublin, Dublin, Ireland.
Pediatr Neurol
January 2025
Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
Background: To explore the utility of general movements assessment as a predictive tool of the neurological outcome in term-born infants with hypoxic-ischemic encephalopathy (HIE) at ages six and 12 months.
Methods: This prospective observational study was conducted for 18 months (August 2018 to December 2019). Term-born newborns with HIE were included.
Dev Med Child Neurol
January 2025
Cerebral Palsy Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
Aim: To describe research priority-setting activities for cerebral palsy (CP) that have been conducted worldwide involving people with lived experience, focusing on participant characteristics, methods employed, identified research priorities, and collaboration as research partners.
Method: The JBI scoping review approach was followed. Six electronic databases and grey literature were searched for all publications up to February 2024.
J Clin Med
January 2025
Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy.
: The evolution of technology has continuously redefined the landscape of rehabilitation medicine. Researchers have long incorporated virtual reality (VR) as a promising intervention, providing immersive therapeutic environments for patients. The emergence of the metaverse has recently further expanded the potential applications of VR to augment the possibilities in rehabilitation.
View Article and Find Full Text PDFJ Clin Med
January 2025
Biomechanics and Technical Aids Unit, Hospital Nacional de Parapléjicos, 45004 Toledo, Spain.
: With technological advancements, virtual versions of the Box and Block Test (BBT) employing the Leap Motion Controller have been developed for evaluating hand dexterity. Currently, there are no studies about the usefulness of this system in children with unilateral cerebral palsy (UCP). Thus, our main objective is to apply a virtual BBT based on the Leap Motion Controller in children with UCP compared with the real BTT for assessing upper limb function within a pilot study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!