Appearance of middle-aged obesity and aging anorexia both in humans and rodents suggests a role for regulatory alterations. Hypothalamic melanocortin agonist, α-melanocyte-stimulating hormone (α-MSH) produced in the arcuate nucleus (ARC), reduces body weight via inducing hypermetabolism and anorexia mainly through melanocortin 4 receptors (MC4Rs) in the paraventricular nucleus (PVN). Orexigenic ARC-derived agouti-related protein (AgRP) is an inverse agonist on MC4R in the PVN. Previously, we demonstrated that characteristic age-related shifts in the catabolic effects of α-MSH may contribute both to middle-aged obesity and aging anorexia. Responsiveness to α-MSH decreases in middle-aged rats compared with young adults, whereas in old age it rises again significantly. We hypothesized corresponding age-related dynamics of endogenous melanocortins. Therefore, we quantified mRNA gene expression and peptide or protein level of α-MSH, AgRP, and MC4R in the ARC and PVN of male Wistar rats of five age groups (from young to old). Immunofluorescence and quantitative reverse transcriptase polymerase chain reaction were applied. α-MSH and MC4R immunoreactivities in the ARC and PVN declined in middle-aged and increased together with their expressions in aging rats. AgRP gene expression but not its immunoreactivity increased in aging rats. Our results demonstrate that age-dependent changes of endogenous melanocortins contribute to middle-aged obesity and aging anorexia.

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glx213DOI Listing

Publication Analysis

Top Keywords

middle-aged obesity
12
obesity aging
12
aging anorexia
12
hypothalamic melanocortin
8
decreases middle-aged
8
contribute middle-aged
8
endogenous melanocortins
8
gene expression
8
arc pvn
8
aging rats
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!