Purpose: Staphylococcus aureus is an opportunistic human pathogen that can cause serious infections in humans. A plethora of known and putative virulence factors are produced by staphylococci that collectively orchestrate pathogenesis. Ear protein (Escherichia coli ampicillin resistance) in S. aureus is an exoprotein in COL strain, predicted to be a superantigen, and speculated to play roles in antibiotic resistance and virulence. The goal of this study was to determine if expression of ear is modulated by single nucleotide polymorphisms in its promoter and coding sequences and whether this gene plays roles in antibiotic resistance and virulence.
Methodology: Promoter, coding sequences and expression of the ear gene in clinical and carriage S. aureus strains with distinct genetic backgrounds were analysed. The JE2 strain and its isogenic ear mutant were used in a systemic infection mouse model to determine the competiveness of the ear mutant.Results/Key findings. The ear gene showed a variable expression, with USA300FPR3757 showing a high-level expression compared to many of the other strains tested including some showing negligible expression. Higher expression was associated with agr type 1 but not correlated with phylogenetic relatedness of the ear gene based upon single nucleotide polymorphisms in the promoter or coding regions suggesting a complex regulation. An isogenic JE2 (USA300 background) ear mutant showed no significant difference in its growth, antibiotic susceptibility or virulence in a mouse model.
Conclusion: Our data suggests that despite being highly expressed in a USA300 genetic background, Ear is not a significant contributor to virulence in that strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jmm.0.000630 | DOI Listing |
Alzheimers Dement
December 2024
University of Pennsylvania, Philadelphia, PA, USA.
Background: Recent genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified approximately 70 genetic loci linked to the disorder. The pivotal challenge in the post-GWAS era is dissecting the underlying causal variants and effector genes, a crucial step for effective therapeutic development. Most of these variants reside in non-coding regions of the genome, suggesting their regulatory role in distal gene expression.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India.
Under changing climatic conditions, plant exposure to high-intensity UV-B can be a potential threat to plant health and all plant-derived human requirements, including food. It's crucial to understand how plants respond to high UV-B radiation so that proper measures can be taken to enhance tolerance towards high UV-B stress. We found that BBX22, a B-box protein-coding gene, is strongly induced within one hour of exposure to high-intensity UV-B.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, USA.
Motivation: As nanopore technology reaches ever higher throughput and accuracy, it becomes an increasingly viable candidate for reading out DNA data storage. Nanopore sequencing offers considerable flexibility by allowing long reads, real-time signal analysis, and the ability to read both DNA and RNA. We need flexible and efficient designs that match nanopore's capabilities, but relatively few designs have been explored and many have significant inefficiency in read density, error rate, or compute time.
View Article and Find Full Text PDFCurr Oncol Rep
January 2025
Department of Molecular Oncology, Cancer Institute (WIA), Chennai, TN, India.
Purpose Of The Review: This review aims to explore the pivotal role of long non-coding RNAs (lncRNAs) as epigenetic regulators in the pathogenesis of multiple myeloma (MM). Additionally, we have portrayed the dual role of lncRNAs in the epigenetic landscape of MM pathobiology.
Recent Findings: In MM, lncRNAs are pivotal for proliferation, progression, and drug resistance by acting as miRNA sponges, regulating mRNA activity through microRNA recognition elements (MREs).
Med Microbiol Immunol
January 2025
Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
\nKlebsiella pneumoniae is a common pathogen of healthcare-associated infections expressing a plethora of antimicrobial resistance loci, including ADP-ribosyltransferase coding genes (arr), able to mediate rifampicin resistance. The latter has activity against a broad range of microorganisms by inhibiting DNA-dependent RNA polymerases. This study aims to characterise the arr distribution and genetic context in 138 clinical isolates of K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!