Indoor Multipath Assisted Angle of Arrival Localization.

Sensors (Basel)

Dramco Research Group, Faculty of Engineering Technology, Electronics, KU Leuven, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium.

Published: November 2017

Indoor radio frequency positioning systems enable a broad range of location aware applications. However, the localization accuracy is often impaired by Non-Line-Of-Sight (NLOS) connections and indoor multipath effects. An interesting evolution in widely deployed communication systems is the transition to multi-antenna devices with beamforming capabilities. These properties form an opportunity for localization methods based on Angle of Arrival (AoA) estimation. This work investigates how multipath propagation can be exploited to enhance the accuracy of AoA localization systems. The presented multipath assisted method resembles a fingerprinting approach, matching an AoA measurement vector to a set of reference vectors. However, reference data is not generated by labor intensive site surveying. Instead, a ray tracer is used, relying on a-priori known floor plan information. The resulting algorithm requires only one fixed receiving antenna array to determine the position of a mobile transmitter in a room. The approach is experimentally evaluated in LOS and NLOS conditions, providing insights in the accuracy and robustness. The measurements are performed in various indoor environments with different hardware configurations. This leads to the conclusion that the proposed system yields a considerable accuracy improvement over common narrowband AoA positioning methods, as well as a reduction of setup efforts in comparison to conventional fingerprinting systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713621PMC
http://dx.doi.org/10.3390/s17112522DOI Listing

Publication Analysis

Top Keywords

indoor multipath
8
multipath assisted
8
angle arrival
8
indoor
4
assisted angle
4
localization
4
arrival localization
4
localization indoor
4
indoor radio
4
radio frequency
4

Similar Publications

A Precise and Scalable Indoor Positioning System Using Cross-Modal Knowledge Distillation.

Sensors (Basel)

November 2024

Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan.

User location has emerged as a pivotal factor in human-centered environments, driving applications like tracking, navigation, healthcare, and emergency response that align with Sustainable Development Goals (SDGs). However, accurate indoor localization remains challenging due to the limitations of GPS in indoor settings, where signal interference and reflections disrupt satellite connections. While Received Signal Strength Indicator (RSSI) methods are commonly employed, they are affected by environmental noise, multipath fading, and signal interference.

View Article and Find Full Text PDF

Localization of unmanned aircraft systems (UASs) in indoor scenarios and GNSS-denied environments is a difficult problem, particularly in dynamic scenarios where traditional on-board equipment (such as LiDAR, radar, sonar, camera) may fail. In the framework of autonomous UAS missions, precise feedback on real-time aircraft position is very important, and several technologies alternative to GNSS-based approaches for UAS positioning in indoor navigation have been recently explored. In this paper, we propose a low-cost IPS for UAVs, based on Bluetooth low energy (BLE) beacons, which exploits the (received signal strength indicator) for distance estimation and positioning.

View Article and Find Full Text PDF

UWB-Assisted Bluetooth Localization Using Regression Models and Multi-Scan Processing.

Sensors (Basel)

October 2024

School of Aerospace Science and Technology, Xidian University, Xi'an 710126, China.

Bluetooth devices have been widely used for pedestrian positioning and navigation in complex indoor scenes. Bluetooth beacons are scattered throughout the entire indoor walkable area containing stairwells, and pedestrian positioning can be obtained by the received Bluetooth packets. However, the positioning performance is sharply deteriorated by the multipath effects originating from indoor clutter and walls.

View Article and Find Full Text PDF

Recently, indoor positioning has been one of the hot topics in the field of navigation and positioning. Among different solutions on indoor positioning, positioning with acoustic signals has its promise due to its relatively high accuracy in the line of sight scenarios, low cost, and ease of being implemented in smartphones. In this work, a novel acoustic positioning method, called RATBILS, is proposed, in which encoded chirp acoustic signals are modulated and transmitted by different acoustic base stations.

View Article and Find Full Text PDF

Ultra-wideband (UWB) technology is extensively used in indoor navigation, medical applications, and Internet of Things devices due to its low power consumption and resilience against multipath fading and losses. This paper examines a multiple-input multiple-output (MIMO), circularly polarized (CP) dielectric resonator antenna for UWB systems. Compact form factor, high gain, wideband response, improved port isolation, and high data rates are the major design goals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!