Removal of tetrachloroethene from polluted air by activated sludge.

Environ Technol

a Biology Division, Faculty of Building Services, Hydro and Environmental Engineering , Warsaw University of Technology, Warsaw , Poland.

Published: January 2019

A one-step technological system containing activated sludge fed with synthetic domestic wastewater was applied to treat waste air polluted with tetrachloroethene (PCE). In the first stage of the experiment, air passed through a bioscrubber; in the second and third stages, it passed through the bioreactor containing activated sludge and bacteria immobilised in oak chips. These bacteria are active in PCE biodegradation. Process efficiency in the final stage of the experiment was high; the elimination capacity was 0.23 g m h with the PCE mass loading rate of 0.58 g m h. It has been shown that in the activated sludge bioreactor, bacteria adapted to PCE biodegradation and the wood chips protected microorganisms from the toxic effects of pollution. The dominant strains of bacteria immobilised in wood chips have been identified. Most of them were Gram-negative rods - Pseudomonas aeruginosa, Pseudomonas putida, Ralstonia pickettii and Ochrobactrum anthropii. Only one strain was Gram-positive and of cylindrical shape. The results of the study indicate the potential of immobilised bacteria capable of degrading chlorinated aliphatic hydrocarbons for the air and wastewater treatment. The low cost of the treatment process is an advantage.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2017.1397759DOI Listing

Publication Analysis

Top Keywords

activated sludge
16
stage experiment
8
bacteria immobilised
8
pce biodegradation
8
wood chips
8
bacteria
5
removal tetrachloroethene
4
tetrachloroethene polluted
4
air
4
polluted air
4

Similar Publications

This investigation aims to apply the adsorption process to eliminate mequitazine and ethinylestradiol, the active molecules of Primalan and Diane, respectively, from aqueous solutions, utilizing biochar synthesized from pumpkin fruits (PB-500). The results revealed that the obtained adsorbent possessed a notable specific surface area, contributing to removal efficiencies of 66.61% and 62.

View Article and Find Full Text PDF

Enhancement of aerobic sludge granulation by quorum sensing signaling molecules mediated by biomimetic bacterial extracellular vesicles.

J Environ Manage

January 2025

Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China. Electronic address:

The addition of exogenous quorum sensing signaling molecules to the activated sludge system enables rapid sludge granulation. However, signaling molecules exposed to the environment are easily degraded, and their quorum sensing effects cannot be maintained in the long term. Therefore, they must be frequently added, which leads to an increase in operational costs.

View Article and Find Full Text PDF

Demonstrating performance in scaled-up production and quality control of polyhydroxyalkanoates using municipal waste activated sludge.

Water Res

January 2025

Department of Biotechnology, Delft University of Technology, Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands; School of Chemical Engineering, University of Queensland, St. Lucia, Australia. Electronic address:

Significant progress has been made over the past decade with pilot scale polyhydroxyalkanoate (PHA) production by direct accumulation using municipal waste activated sludge (WAS). However, industrial upscaling experiences are still lacking in the research literature. In this study, a demonstration scale (4 m) PHA production process was operated using industrially relevant equipment and compared favourably to those from parallel pilot scale (200 L) production runs.

View Article and Find Full Text PDF

One of the most costly stages of activated sludge wastewater treatment plants is the treatment and dewatering of waste sludge. Chemical conditioning of sludge, as one of the most widespread methods to enhance sludge dewaterability, accounts for a significant portion of operational expenses due to the consumption of expensive polymeric compounds. This research aims to assess the cost-effectiveness of ochre soil, modified with hydrochloric acid, as an affordable mineral for conditioning waste sludge in an activated sludge system.

View Article and Find Full Text PDF

Methane production from anaerobic pre-treatment of municipal wastewater combined with olive mill wastewater: A demonstration study.

Water Sci Technol

January 2025

The Institute of Applied Research, The Galilee Society, Shefa-Amr 2020000, Israel; Agrobics Ltd, Shefa-Amr 2020000, Israel; Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel 2161002, Israel.

The advanced anaerobic technology (AAT), developed based on an immobilized high-rate anaerobic reactor, was applied as a pretreatment of municipal wastewater (WW) at Karmiel's treatment plant in Israel. The demonstration-scale AAT (21 m) system was operated at a flow rate of 100 mday municipal WW mixed with olive mill wastewater (OMW) (0.5 mday) to simulate the scenario of illegal discharge of agro-industrial WW.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!