The Y chromosome, which in man determines the male sex, is composed of two functionally distinct regions. The pseudoautosomal region is shared between the X and Y chromosome and is probably required for the correct segregation of the sex chromosomes during male meiosis. The second region includes the sex-determining gene(s), the presence of which is necessary for the development of testes. The two regions have contrasting genetic properties: the pseudoautosomal region recombines between the X and Y chromosome; the Y-specific region must avoid recombination otherwise the chromosomal basis of sex-determination breaks down. The pseudoautosomal region is bounded at the distal end by the telomere and at the proximal end by X- and Y-specific DNA. We have found that the proximal boundary was formed by the insertion of an Alu sequence on the Y chromosome early in the primate lineage. Proximal to the Alu insertion there is a small region where similarity between the X and Y chromosomes is reduced and which is no longer subject to recombination.

Download full-text PDF

Source
http://dx.doi.org/10.1038/337081a0DOI Listing

Publication Analysis

Top Keywords

pseudoautosomal region
12
region
6
chromosome
5
pseudoautosomal
4
pseudoautosomal boundary
4
boundary man
4
man defined
4
defined alu
4
alu repeat
4
repeat sequence
4

Similar Publications

X-chromosome-wide association study for Alzheimer's disease.

Mol Psychiatry

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France.

Article Synopsis
  • A study was conducted to investigate the X-chromosome's role in Alzheimer's Disease (AD), which had been overlooked in previous genome-wide association studies.
  • The research included 115,841 AD cases and 613,671 controls, considering different X-chromosome inactivation (XCI) states in females.
  • While no strong genetic risk factors for AD were found on the X-chromosome, seven significant loci were identified, suggesting areas for future research.
View Article and Find Full Text PDF

Where is the boundary of the human pseudoautosomal region?

Am J Hum Genet

November 2024

Whitehead Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address:

Article Synopsis
  • * The analysis involved reviewing earlier data on the PAR boundary and using modern genomic datasets to look for evidence of crossing-over between the X and Y chromosomes.
  • * The findings indicate significant crossing-over events very close to the old boundary, leading to a more precise identification of the PAR boundary within a 201-bp range.
View Article and Find Full Text PDF

Reference genomes of cattle and sheep have lacked contiguous assemblies of the sex-determining Y chromosome. Here, we assemble complete and gapless telomere to telomere (T2T) Y chromosomes for these species. We find that the pseudo-autosomal regions are similar in length, but the total chromosome size is substantially different, with the cattle Y more than twice the length of the sheep Y.

View Article and Find Full Text PDF
Article Synopsis
  • Isodicentric Y chromosomes are common structural variants in humans, particularly with unclear mechanisms behind those involving short arm breakpoints (idic(Yq)).
  • A Japanese man with azoospermia (lack of sperm) and short stature was diagnosed with a unique karyotype featuring a mix of chromosomal abnormalities, including an ∼1.8 Mb deletion in his Y chromosome.
  • The findings suggest the idic(Yq) condition arose from multiple DNA breaks in a specific region (PAR1) of the Y chromosome, and the patient's symptoms might be linked to genetic factors affecting his growth and fertility.
View Article and Find Full Text PDF

Chromosomal fusions play an integral role in genome remodeling and karyotype evolution. Fusions that join a sex chromosome to an autosome are particularly abundant across the tree of life. However, previous models on the establishment of such fusions have not accounted for the physical structure of the chromosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!