Melanization Affects the Content of Selected Elements in Parmelioid Lichens.

J Chem Ecol

Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, I-34127, Trieste, Italy.

Published: December 2017

Lichens belonging to Parmeliaceae are highly diversified, but most of them share an extremely conserved morpho-chemical trait: the lower cortex is heavily melanized. The adaptive value of this character is still uncertain. Melanins are ubiquitous compounds found in most organisms since they fulfil several biological functions including defense against UV radiation, oxidizing agents, microbial stress, and metal complexation. This work aims to establish whether melanization can affect the elemental content of lichen thalli. The relative abundance of macro- (Ca, K and S) and micro- (Fe, Mn and Zn) nutrients in melanized and non-melanized pseudotissues of nine species was first evaluated by a non-destructive micro-X-ray fluorescence elemental analysis on either the upper and lower cortex, and on the internal medulla, which was artificially exposed to the mechanical removal of the lower cortex. Afterwards, the total concentration of the same elements was measured in composite samples by inductively coupled plasma atomic emission spectroscopy after acidic digestion. In order to verify whether Fe and Zn are chemically bound to the melanized pseudotissues, a sequential elution experiment was performed on two species: the two-side heavily melanized Melanelixia glabratula and the one-side lightly melanized Punctelia subrudecta. The content of Fe and Zn was higher in the melanized species than in the non-melanized ones. Species deprived of their melanized lower cortex showed a sharp decrease in Fe but not in Zn, suggesting that the melanized lower cortex is involved in Fe complexation, whereas Zn is homogeneously distributed throughout the thallus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10886-017-0899-8DOI Listing

Publication Analysis

Top Keywords

lower cortex
20
melanized
8
heavily melanized
8
melanized lower
8
lower
5
cortex
5
melanization content
4
content selected
4
selected elements
4
elements parmelioid
4

Similar Publications

We generated asynchronous functional networks (aFNs) using a novel method called optimal causation entropy and compared aFN topology with the correlation-based synchronous functional networks (sFNs), which are commonly used in network neuroscience studies. Functional magnetic resonance imaging (fMRI) time series from 212 participants of the National Consortium on Alcohol and Neurodevelopment in Adolescence study were used to generate aFNs and sFNs. As a demonstration of how aFNs and sFNs can be used in tandem, we used multivariate mixed effects models to determine whether age interacted with node efficiency to influence connection probabilities in the two networks.

View Article and Find Full Text PDF

Neural representations for visual stimuli typically emerge with a bilateral distribution across occipitotemporal cortex (OTC)? Pediatric patients undergoing unilateral OTC resection offer an opportunity to evaluate whether representations for visual stimulus individuation can sufficiently develop in a single OTC. Here, we assessed the non-resected hemisphere of patients with pediatric resection within ( = 9) and outside ( = 12) OTC, as well as healthy controls' two hemispheres ( = 21). Using functional magnetic resonance imaging, we mapped category selectivity (CS), and representations for visual stimulus individuation (for faces, objects, and words) with repetition suppression (RS).

View Article and Find Full Text PDF

Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.

Chin J Traumatol

December 2024

Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China. Electronic address:

Purpose: To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.

Methods: This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method.

View Article and Find Full Text PDF

Background: Individuals with posttraumatic stress disorder (PTSD) have high rates of cardiovascular disease (CVD) and increased cardiometabolic CVD risk factors (CVDRFs, e.g., hypertension, hyperlipidemia, or diabetes mellitus).

View Article and Find Full Text PDF

Ultrastructural disturbances in microglia-neuron interactions in the head of the caudate nucleus in schizophrenia.

Eur Arch Psychiatry Clin Neurosci

December 2024

Laboratory of Clinical Neuropathology, Mental Health Research Center, Kashirskoe Shosse 34, 115522, Moscow, Russia.

Previously we found altered microglia-neuron interactions in the prefrontal cortex in schizophrenia. We hypothesized that microglia-neuron interactions may be dysregulated in the caudate nucleus in schizophrenia. A postmortem ultrastructural morphometric study was performed to investigate satellite microglia (SatMg) and adjacent neurons in the head of the caudate nucleus in 21 cases of schizophrenia and 20 healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!