Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease.

Bot Stud

Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India.

Published: November 2017

Plant defense against their pathogens can be induced by a complex network of different inducers. The present study investigates the synergistic effect of Trichoderma harzianum, exogenous salicylic acid (SA) and methyl jasmonate (MeJA) over the response and regulation of the antioxidant defense mechanisms and lipid peroxidation in tomato plants against Fusarium wilt disease. In the present work, tomato plants were infected by Fusarium oxysporum f. sp. lycopersici 3 days after inoculated with T. harzianum and/or sprayed daily for 3 days with chemical inducers (SA and MeJA). Plants were analysed at 0, 24, 48, 72 and 96 h after inoculation with Fusarium oxysporum f. sp. lycopersici. Infection of tomato plants by pathogen led to strong reduction in the dry weight of roots and shoots with the enhanced concentration of HO and varying degree of lipid peroxidation. Concurrently, exogenous SA, when applied with pathogen greatly enhanced HO content as well as activities of antioxidant enzymes except catalase (CAT) and ascorbate peroxidase (APx). The pathogen challenged plants pretreated with T. harzianum and MeJA together exhibited less lipid peroxidation and as well as the elevated level of ascorbic acid and enhanced activities of antioxidant enzymes. All applied treatments protected tomato seedlings against Fusarium wilt disease but the percentage of protection was found higher in plants pretreated with the combination of T. harzianum and chemical inducers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668223PMC
http://dx.doi.org/10.1186/s40529-017-0198-2DOI Listing

Publication Analysis

Top Keywords

fusarium wilt
12
wilt disease
12
lipid peroxidation
12
tomato plants
12
plant defense
8
trichoderma harzianum
8
antioxidant defense
8
fusarium oxysporum
8
oxysporum lycopersici
8
chemical inducers
8

Similar Publications

A new cultivar 'Hisui no Kaori' opens up a fragrant type of lettuce ( L.).

Breed Sci

September 2024

Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.

'Hisui no Kaori' is the first lettuce ( L.) cultivar characterized by a sweet fragrance, attributed to 2-acetyl-1-pyrroline with the same compound as in fragrant rice and soybean cultivars, as well as edible leaves and stem. Field cultivation trials established optimal planting distances at 30 cm between seedlings, with a fertilizer requirement of N = 150 kg/ha.

View Article and Find Full Text PDF

Editorial: Digging deeper: understanding root-pathogen interactions.

Front Plant Sci

January 2025

Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.

View Article and Find Full Text PDF

Biocontrol microbes are environment friendly and safe for humans and animals. To seek biocontrol microbes effective in suppressing is important for tomato production. is a soil-borne pathogen capable of causing wilt in numerous plant species.

View Article and Find Full Text PDF

strain PJH16, isolated and tested by our team, suppresses cucumber wilt as an efficient biocontrol agent. For further investigation, the strain has been combined with two other ( VJH504 and JNF2) to enhance biocontrol ability, which formed high-efficiency microbial agents in the current study. The methodological target taken is based on achieving the optimal growth conditions of the combined microbial agents; hence, the medium composition and culture conditions were optimized through a single-factor test, orthogonal test and response surface methodology.

View Article and Find Full Text PDF

With the aim of enhancing plants' ability to respond to pathogenic fungi, this study focuses on disease resistance genes. We commenced a series of investigations by capitalizing on the pronounced differences in resistance to Fusarium wilt between resistant and susceptible varieties. Through an in-depth exploration of the metabolic pathways that bolster this defense, we identified genes associated with resistance to f.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!