Differentially expressed genes in the caecal and colonic mucosa of Landrace finishing pigs with high and low food conversion ratios.

Sci Rep

National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China.

Published: November 2017

The feed conversion ratio (FCR) is an essential economic trait for pig production, and is directly related to feed efficiency. Studies identifying the differential expression of functional genes involved in biological and molecular mechanisms in the intestine in relation to growth performance are rare. In this study, RNA-Seq was used to identify transcriptomes in caecal and colonic mucosal tissues in order to determine the differential expression of genes from two full-sibling pairs and two half-sibling pairs of Landrace finishing pigs with opposing FCR phenotypes. In total, 138 (comparison of high and low FCR in caecal mucosa), 64 (comparison of high and low FCR in colonic mucosa), and 165 (contrast between the caecal and colonic mucosa) differentially expressed genes were identified. Some of these genes were functionally related to energy and lipid metabolism, particularly short chain fatty acids metabolism, as well as gastrointestinal peristalsis and ion transport. Functional annotation were performed to identify differentially expressed genes, such as GUCA2A, GUCA2B, HSP70.2, NOS2, PCK1, SLCs, and CYPs, which may positively influence feed efficiency in Landrace pigs. These differentially expressed genes need to be further tested for candidate genes that are related to feed efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668291PMC
http://dx.doi.org/10.1038/s41598-017-14568-6DOI Listing

Publication Analysis

Top Keywords

differentially expressed
16
expressed genes
16
caecal colonic
12
colonic mucosa
12
high low
12
feed efficiency
12
genes
8
landrace finishing
8
finishing pigs
8
differential expression
8

Similar Publications

Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.

Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.

View Article and Find Full Text PDF

Background: The microbiome regulates the respiratory epithelium's immunomodulatory functions. To explore how the microbiome's biodiversity affects microbe-epithelial interactions, we screened 58 phylogenetically diverse microbes for their transcriptomic effect on human primary bronchial air-liquid interface (ALI) cell cultures.

Results: We found distinct species- and strain-level differences in host innate immunity and epithelial barrier response.

View Article and Find Full Text PDF

Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor in the digestive system, with an increasing incidence and mortality rate globally. Recent genetic studies have revealed that the abnormal expression and functional dysregulation of various genes are involved in the occurrence and progression of pancreatic cancer. NIPA-like proteins (NIPAs) are expressed in a variety of cancer types, yet the role of NIPAL1 in cancer remains unclear.

View Article and Find Full Text PDF

Background: The photothermal sensitivity of tobacco refers to how tobacco plants respond to variations in the photothermal conditions of their growth environment. The degree of this sensitivity is crucial for determining the optimal planting regions for specific varieties, as well as for improving the quality and yield of tobacco leaves. However, the precise mechanisms underlying the development of photothermal sensitivity in tobacco remain unclear.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is frequently associated with musculoskeletal complications, including sarcopenia and osteoporosis, which substantially impair patient quality of life. Despite these clinical observations, the molecular mechanisms linking AD to bone loss remain insufficiently explored. In this study, we examined the femoral bone microarchitecture and transcriptomic profiles of APP/PS1 transgenic mouse models of AD to elucidate the disease's impact on bone pathology and identify potential gene candidates associated with bone deterioration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!