Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rise of atomically thin materials has the potential to enable a paradigm shift in modern technologies by introducing multi-functional materials in the semiconductor industry. To date the growth of high quality atomically thin semiconductors (e.g. WS) is one of the most pressing challenges to unleash the potential of these materials and the growth of mono- or bi-layers with high crystal quality is yet to see its full realization. Here, we show that the novel use of molecular precursors in the controlled synthesis of mono- and bi-layer WS leads to superior material quality compared to the widely used direct sulfidization of WO-based precursors. Record high room temperature charge carrier mobility up to 52 cm/Vs and ultra-sharp photoluminescence linewidth of just 36 meV over submillimeter areas demonstrate that the quality of this material supersedes also that of naturally occurring materials. By exploiting surface diffusion kinetics of W and S species adsorbed onto a substrate, a deterministic layer thickness control has also been achieved promoting the design of scalable synthesis routes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668258 | PMC |
http://dx.doi.org/10.1038/s41598-017-14928-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!