Increased synthesis and deposition of extracellular matrix (ECM) proteins in the trabecular meshwork (TM) is associated with TM dysfunction and intraocular pressure (IOP) elevation in glaucoma. However, it is not understood how ECM accumulation leads to TM dysfunction and IOP elevation. Using a mouse model of glucocorticoid (GC)-induced glaucoma, primary human TM cells and human post-mortem TM tissues, we show that increased ECM accumulation leads to endoplasmic reticulum (ER) stress in the TM. The potent GC, dexamethasone (Dex) increased the secretory protein load of ECM proteins in the ER of TM cells, inducing ER stress. Reduction of fibronectin, a major regulator of ECM structure, prevented ER stress in Dex-treated TM cells. Overexpression of fibronectin via treatment with cellular fibronectin also induced chronic ER stress in primary human TM cells. Primary human TM cells grown on ECM derived from Dex-treated TM cells induced ER stress markers. TM cells were more prone to ER stress from ECM accumulation compared to other ocular cell types. Moreover, increased co-localization of ECM proteins with ER stress markers was observed in human post-mortem glaucomatous TM tissues. These data indicate that ER stress is associated with increased ECM accumulation in mouse and human glaucomatous TM tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668243 | PMC |
http://dx.doi.org/10.1038/s41598-017-14938-0 | DOI Listing |
Fitoterapia
January 2025
Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine,Chengdu, Sichuan 610041, PR China. Electronic address:
Background: Hepatic fibrosis is a wound healing response that leads to excessive deposition of extracellular matrix (ECM) due to sustained liver injury. Hepatic stellate cells (HSCs) are key players in ECM synthesis, with the TGF-β/Smad signaling pathway being central to their activation. Despite advances in understanding the pathogenesis of hepatic fibrosis, effective anti-fibrotic therapies are still lacking.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Pathophysiology, Guangdong Medical University, Dongguan, China.
In recent years, stem cell therapy has become a pivotal component of regenerative medicine. Stem cells, characterized by their self-renewal capacity and multidirectional differentiation potential, can be isolated from a variety of biological tissues, including adipose tissue, bone marrow, the umbilical cord, and the placenta. The classic applications of stem cells include human pluripotent stem cells (hPSCs) and mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFGlaucoma is a leading cause of irreversible blindness, often associated with elevated intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction. Diabetes mellitus (DM) is recognized as a significant risk factor for glaucoma; however, the molecular mechanisms through which hyperglycemia affects TM function remain unclear. This study investigated the impact of high glucose on gene expression in human TM (HTM) cells to uncover pathways that contribute to TM dysfunction and glaucoma pathogenesis under diabetic conditions.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA.
Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.
View Article and Find Full Text PDFACS Nano
December 2024
School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P. R. China.
Chemotherapy is the primary treatment option for pancreatic cancer, although nanocarrier-based drug delivery systems often struggle with multiple physiological barriers, limiting their therapeutic efficacy. Here, we developed a pH/reactive oxygen species (ROS) dual-sensitive self-adaptive nanocarrier (DAT) encapsulating camptothecin (CPT), an analog of the pancreatic chemotherapeutic drug irinotecan (CPT-11), to enhance chemotherapy outcomes in orthotopic pancreatic cancer by addressing multiple physiological barriers. The nanocarrier features a peripherally positively charged arginine (Arg) residue on DAT and is masked with an acid-labile 2,3-dimethylmaleic anhydride (DA) to improve circulation time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!