AI Article Synopsis

  • Carboxylesterases (CarEs) are crucial for metabolizing essential compounds and detoxifying harmful substances in insects, with previous research mostly focusing on their role in pesticide metabolism.
  • This study specifically isolates the carboxylesterase gene esterase FE4 from Apis cerana cerana to explore its functions as an antioxidant and its involvement in detoxification under various stress conditions.
  • The findings indicate that AcceFE4 expression is influenced by different stressors, suggesting its significant role in oxidative resistance, as shown by reduced oxidative gene expression and enzyme activity following RNA interference knockdown.

Article Abstract

Carboxylesterases (CarEs) play vital roles in metabolising different physiologically important endogenous compounds and in detoxifying various harmful exogenous compounds in insects. Multiple studies of CarEs have focused on pesticide metabolism in insects, while few studies have aimed to identify CarE functions in oxidative resistance, particularly in Apis cerana cerana. In this study, we isolated a carboxylesterase gene, esterase FE4, from Apis cerana cerana and designated it towards an exploration of its roles as an antioxidant and in detoxification. We investigated AcceFE4 expression patterns in response to various stressors. A quantitative real-time PCR analysis revealed that AcceFE4 was up-regulated by HO, imidacloprid, and paraquat, and was down-regulated by 4 °C, UV radiation, CdCl, and HgCl. Additionally, the protein expression of this gene was down-regulated at 4 °C and up-regulated by HO. Disc diffusion assays showed that the AcceFE4 recombinant protein-expressing bacteria had a smaller killing zone than the control group with the paraquat, HgCl and cumyl hydroperoxide treatments. Moreover, when the gene was knocked down by RNA interference, we observed that multiple oxidant genes (i.e., AccSOD, AccGST, AccTrx, AccMsrA, and others) were down-regulated in the knockdown samples. Superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activity levels were reduced in the knockdown samples relative to the control group. Finally, we measured the enzyme activity of carboxylesterase and found that the enzyme activity was also reduced in the silent samples. Together, these data suggest that AcceFE4 may be involved in the oxidative resistance response during adverse stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2017.10.022DOI Listing

Publication Analysis

Top Keywords

apis cerana
12
cerana cerana
12
oxidative resistance
12
esterase fe4
8
fe4 apis
8
down-regulated 4 °c
8
control group
8
knockdown samples
8
enzyme activity
8
cerana
6

Similar Publications

Effects of Nosema ceranae and Lotmaria passim infections on honey bee foraging behaviour and physiology.

Int J Parasitol

December 2024

Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, Alberta, Canada T0H 0C0. Electronic address:

Nosema ceranae and Lotmaria passim are two commonly encountered digestive tract parasites of the adult honey bee (Apis mellifera L.). Although these parasites are associated with colony losses, little is known about how they affect individual bee physiology and behaviour at the colony level.

View Article and Find Full Text PDF

Assessing the distribution and human health risks of cationic surface-active agents in honey from China.

J Hazard Mater

December 2024

State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China. Electronic address:

Cationic surface-active agents (CSAAs) can persist in ambient water, be ingested by bees, and contaminate honey. Residues of CSAAs in honey remains unknown. This study measured the residual levels of five CSAAs in 271 honey samples from China using ultrahigh-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry.

View Article and Find Full Text PDF

The chemical composition and quality of honey are influenced by its botanical, geographic, and entomological origins, as well as climatic conditions. In this study, the physicochemical characteristics, microbial communities, and hydrocarbon compounds of honey produced by , , , , and were elucidated. The physicochemical profile of the honey exhibited significant differences across species, including moisture content (18.

View Article and Find Full Text PDF

Mechanisms of selectivity for azadirachtin in honeybees (Apis cerana): A new strategy for avoiding thiamethoxam ingestion.

Pestic Biochem Physiol

December 2024

State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Guangzhou 510642, China. Electronic address:

The high toxicity of thiamethoxam (Thi) to foragers has threatened the development of bee populations and the use of neonicotinoid pesticides. In this study, we explored the mechanism of selective feeding on azadirachtin (Aza) by foragers to reduce the feeding of Aza-Thi and improve foragers' safety. The results showed that foragers under selective feeding significantly reduced the Aza sucrose solution intake.

View Article and Find Full Text PDF

Comparative toxicities of commonly used agricultural insecticides to four honey bee species (Hymenoptera: Apidae) in Vietnam.

Environ Toxicol Pharmacol

December 2024

Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA. Electronic address:

Article Synopsis
  • * A study tested the oral toxicity of five common insecticides on four honey bee species, finding that the managed Asian honey bee (Apis cerana) showed the highest tolerance to these chemicals.
  • * The wild species, particularly the giant (A. dorsata) and red dwarf honey bee (A. florea), were more sensitive to the pesticides, emphasizing the need for better pesticide risk assessments and regulations to protect various honey bee species.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!