Clinical studies have reported an association between low blood levels of 25-hydroxyvitamin D and the progression of osteoarthritis (OA), but the mechanism and effects of vitamin D signaling on articular chondrocytes and cartilage remains unclear. The purpose of this study was to investigate the effects of vitamin D on articular cartilage degeneration using eldecalcitol (ED-71), which is an active vitamin D analog. Eight-week old male C57BL/6NCrSlc mice were subjected to experimental surgery to induce OA and local treatments with 10 μL ED-71 (0.5 μg/mL) were administered weekly. Four and 12 weeks after surgery, joints were evaluated using histological scoring systems. In addition, gene expression was analyzed in chondrocytes that were isolated from wildtype neonatal mice, cultured, and treated with ED-71 (10 M). Joints treated with ED-71 demonstrated slowed progression of OA at 4 weeks after surgery, but few effects were observed at 12 weeks after surgery. Ets-related gene (Erg) expression was upregulated in OA articular cartilage, and further increased by ED-71 treatment. In primary chondrocytes cultured with ED-71, the gene expression of Erg and lubricin/proteoglycan 4 significantly increased, as compared to that of cells cultured without ED-71. Local treatment with ED-71 reduced degenerative changes to the articular cartilage during the early phase of experimental OA. Regulation of Erg by ED-71 in articular cartilage could confer resistance to early osteoarthritic changes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.10.155DOI Listing

Publication Analysis

Top Keywords

articular cartilage
20
weeks surgery
12
ed-71
9
effects vitamin
8
gene expression
8
treated ed-71
8
cultured ed-71
8
cartilage
6
articular
5
eldecalcitol articular
4

Similar Publications

Injectable microspheres filled with copper-containing bioactive glass improve articular cartilage healing by regulating inflammation and recruiting stem cells.

Regen Biomater

December 2024

Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P. R. China.

Osteoarthritis (OA) is a frequent chronic illness in orthopedics that poses a major hazard to patient health. cell therapy is emerging as a therapeutic option, but its efficacy is influenced by both the inflammatory milieu and the amount of stem cells, limiting its use. In this study, we designed a novel injectable porous microsphere (PM) based on microfluidic technology that can support mesenchymal stem cells (MSCs) therapy by combining polylactic-glycolic acid copolymer, kartogenin, polydopamine, stromal cell-derived factor-1, and copper-doped bioactive glass (CuBG).

View Article and Find Full Text PDF

Articular cartilage has a limited self-healing capacity, leading to joint degeneration and osteoarthritis over time. Therefore, bioactive scaffolds are gaining attention as a promising approach to regenerating and repairing damaged articular cartilage through tissue engineering. In this study, we reported on a novel 3D bio-printed proteinaceous bioactive scaffolds combined with natural porcine cancellous bone dECM, tempo-oxidized cellulose nanofiber (TOCN), and alginate carriers for TGF-β1, FGF-18, and ADSCs to repair cartilage defects.

View Article and Find Full Text PDF

Delivery of FGF18 using mRNA-LNP protects the cartilage against degeneration via alleviating chondrocyte senescence.

J Nanobiotechnology

January 2025

Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.

Background: Osteoarthritis (OA) is a degenerative joint disease with an immense unmet medical need. FGF18 protein is a potential regenerative factor for cartilage repair. However, traditional protein delivery methods have limited efficacy due to the short lifetime and shallow infiltration.

View Article and Find Full Text PDF

The reduction in hyaluronic acid concentration and viscosity in the synovial fluid of patients struggling with osteoarthritis increases the abrasion of articular cartilage. The aim of this study was to design a semi-IPN hydrogel based on genipin-crosslinked carboxymethyl chitosan (CMCh) and glycerol to achieve long-term release of hyaluronic acid. The results showed that hydrogel comprising CMCh (3 % wt.

View Article and Find Full Text PDF

The high-dynamic, high-loading environment in the joint cavity puts urgent demands on the cartilage regenerative materials with shear responsiveness and lubrication. Here, a new type of injectable hydrogel composed of oxidized hyaluronic acid (OHA), adipic dihydrazide-grafted hyaluronic acid (HA-ADH), oxidized chondroitin sulfate (OChs), and decellularized extracellular matrix methacrylate (dECMMA) was fabricated. The aldehyde groups in OHA and OChs reacted with the amino groups in HA-ADH to form a dynamic hydrogel, which was then covalently crosslinked with dECMMA to create a dual-crosslinked hydrogel with sufficient mechanical strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!