The orderly formation of the avian feather array is a classic example of periodic pattern formation during embryonic development. Various mathematical models have been developed to describe this process, including Turing/activator-inhibitor type reaction-diffusion systems and chemotaxis/mechanical-based models based on cell movement and tissue interactions. In this paper we formulate a mathematical model founded on experimental findings, a set of interactions between the key cellular (dermal and epidermal cell populations) and molecular (fibroblast growth factor, FGF, and bone morphogenetic protein, BMP) players and a medially progressing priming wave that acts as the trigger to initiate patterning. Linear stability analysis is used to show that FGF-mediated chemotaxis of dermal cells is the crucial driver of pattern formation, while perturbations in the form of ubiquitous high BMP expression suppress patterning, consistent with experiments. Numerical simulations demonstrate the capacity of the model to pattern the skin in a spatial-temporal manner analogous to avian feather development. Further, experimental perturbations in the form of bead-displacement experiments are recapitulated and predictions are proposed in the form of blocking mesenchymal cell proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2017.10.026 | DOI Listing |
Ann Intern Med
January 2025
Center of Innovation to Accelerate Discovery and Practice Transformation, Durham Veterans Affairs Health Care System; Department of Population Health Sciences, Duke University School of Medicine; and Durham Evidence Synthesis Program, Durham Veterans Affairs Health Care System, Durham, North Carolina (J.M.G.).
Background: Postdischarge contacts (PDCs) after hospitalization are common practice, but their effectiveness in reducing use of acute care after discharge remains unclear.
Purpose: To assess the effects of PDC on 30-day emergency department (ED) visits, 30-day hospital readmissions, and patient satisfaction.
Data Sources: MEDLINE, Embase, and CINAHL searched from 2012 to 25 May 2023.
Chem Rev
January 2025
Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States.
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions.
View Article and Find Full Text PDFMol Pharm
January 2025
School of Life Sciences, University of Technology Sydney, Sydney 2007, New South Wales, Australia.
Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
The phenomena occurring in a weld seam during advancement of a laser beam over a metallic component are still under dispute. The occurrence and evolution of porosity and the occasional blowout of melt need to be understood. Here, a recently developed X-ray tomoscopy setup is applied, providing one hundred 3D images per second to capture the temporal evolution of the melt pool in an AlSi9Cu3(Fe) die-casting while a laser beam advances.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
Impaired autophagy is reported to promote osteoarthritis (OA). However, the mechanism by which autophagy in regulating meniscus degeneration and OA remains unclear. Here, unconvered aberrant energetic metabolism pattern in meniscus cells with OA is uncovered first, which results in lower adenosine triphosphate (ATP) production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!