Dasatinib synergizes with ATRA to trigger granulocytic differentiation in ATRA resistant acute promyelocytic leukemia cell lines via Lyn inhibition-mediated activation of RAF-1/MEK/ERK.

Food Chem Toxicol

Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Rui-jin Road II, Shanghai 200025, China. Electronic address:

Published: September 2018

All-trans retinoic acid (ATRA) resistance has been a critical problem in acute promyelocytic leukemia (APL) relapsed patients. In this study, dasatinib synergized with ATRA to trigger differentiation in ATRA-resistant APL cell lines. The combined treatment activated RAF-1, MEK and ERK as well as enhanced ATRA-promoted up-regulation of the protein level of PU.1, C/EBPβ and C/EBPε. U0126 (MEK specific inhibitor) and sorafenib tosylate (RAF-1 specific inhibitor) suppressed the combined treatment-induced differentiation, ERK phosphorylation and the up-regulation of C/EBPs and PU.1. Sorafenib tosylate also attenuated the MEK activity. However, the combined treatment did not enhance Ras activity and Ras inhibitor neither blocked MEK activation nor inhibited differentiation. Therefore, the combined treatment induced differentiation via Ras independent RAF-1/MEK/ERK. Earlier than RAF-1 activation, dasatinib suppressed Lyn activity, the predominant activated Src family kinase (SFK) and dephosphorylated RAF-1 at S259. Furthermore, SFK inhibitor, PP2 did suppress Lyn activity and mimicked the effect of dasatinib on ATRA-induced differentiation as well as decreased phosphorylation of RAF-1 at S259. Thus, it was suggested that Lyn inhibition might activate RAF-1 by the dephosphorylation of RAF at S259 and lead to differentiation. In conclusion, the combination of dasatinib and ATRA could overcome ATRA resistance through Lyn inhibition-mediated activation of RAF-1/MEK/ERK.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2017.10.053DOI Listing

Publication Analysis

Top Keywords

combined treatment
12
atra trigger
8
acute promyelocytic
8
promyelocytic leukemia
8
cell lines
8
lyn inhibition-mediated
8
inhibition-mediated activation
8
activation raf-1/mek/erk
8
atra resistance
8
specific inhibitor
8

Similar Publications

Exploring the role of oxidative stress in carotid atherosclerosis: insights from transcriptomic data and single-cell sequencing combined with machine learning.

Biol Direct

January 2025

National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.

Background: Carotid atherosclerotic plaque is the primary cause of cardiovascular and cerebrovascular diseases. It is closely related to oxidative stress and immune inflammation. This bioinformatic study was conducted to identify key oxidative stress-related genes and key immune cell infiltration involved in the formation, progression, and stabilization of plaques and investigate the relationship between them.

View Article and Find Full Text PDF

Unveiling new therapeutic horizons in rheumatoid arthritis: an In-depth exploration of circular RNAs derived from plasma exosomes.

J Orthop Surg Res

January 2025

Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225000, China.

Rheumatoid arthritis (RA), a chronic inflammatory joint disease causing permanent disability, involves exosomes, nanosized mammalian extracellular particles. Circular RNA (circRNA) serves as a biomarker in RA blood samples. This research screened differentially expressed circRNAs in RA patient plasma exosomes for novel diagnostic biomarkers.

View Article and Find Full Text PDF

Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.

View Article and Find Full Text PDF

Recent advances in oncology research have highlighted the promising synergy between low-dose radiation therapy (LDRT) and immunotherapies, with growing evidence highlighting the unique benefits of the combination. LDRT has emerged as a potent tool for stimulating the immune system, triggering systemic antitumor effects by remodeling the tumor microenvironment. Notably, LDRT demonstrates remarkable efficacy even in challenging metastatic sites such as the liver (uveal) and brain (cutaneous), particularly in advanced melanoma stages.

View Article and Find Full Text PDF

The deltoid ligament (medial collateral ligament) and the syndesmosis (a composite ligamentous structure at the distal tibiofibular junction) are critical for maintaining ankle stability. In cases of high-energy ankle fractures, these structures are often injured simultaneously, leading to instability and potential long-term complications such as post-traumatic arthritis. This review aims to explore advancements in minimally invasive techniques for the treatment of combined deltoid ligament and syndesmosis injuries, with a focus on optimizing surgical outcomes and reducing patient morbidity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!