On the 20th September 2012, a large debris slide occurred in the Móafellshyrna Mountain in the Tröllaskagi peninsula, central north Iceland. Our work describes and discusses the relative importance of the three factors that may have contributed to the failure of the slope: intense precipitation, earthquake activity and thawing of ground ice. We use data from weather stations, seismometers, witness reports and field observations to examine these factors. The slide initiated after an unusually warm and dry summer followed by a month of heavy precipitation. Furthermore, the slide occurred after three seismic episodes, whose epicentres were located ~60km NNE of Móafellshyrna Mountain. The main source of material for the slide was ice-rich colluvium perched on a topographic bench. Blocks of ice-cemented colluvium slid and then broke off the frontal part of the talus slope, and the landslide also involved a component of debris slide, which mobilized around 312,000-480,000m (as estimated from field data and aerial images of erosional morphologies). From our analysis we infer that intense precipitation and seismic activity prior to the slide are the main preparatory factors for the slide. The presence of ice-cemented blocks in the slide's deposits leads us to infer that deep thawing of ground ice was likely the final triggering factor. Ice-cemented blocks of debris have been observed in the deposits of two other recent landslides in northern Iceland, in the Torfufell Mountain and the Árnesfjall Mountain. This suggests that discontinuous mountain permafrost is degrading in Iceland, consistent with the decadal trend of increasing atmospheric temperature in Iceland. This study highlights a newly identified hazard in Iceland: landslides as a result of ground ice thaw. Knowledge of the detailed distribution of mountain permafrost in colluvium on the island is poorly constrained and should be a priority for future research in order to identify zones at risk from this hazard.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.10.111 | DOI Listing |
Sensors (Basel)
December 2024
State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China.
To avoid wear and tear of the slip ring due to electrical corrosion, the slip ring needs to undergo the running-in process under atmospheric conditions without current after assembly. To address the urgent demand for long-service capability space conductive slip rings in the aerospace field, the running-in behavior and failure mechanism between the AgCuNi alloy and Au-electroplated layer are investigated using a ball-on-disc tribometer in this paper. The results show that the transfer film composed of Au plays an important role in modifying the friction during the sliding process.
View Article and Find Full Text PDFSci Rep
January 2025
Medical Physics, University of Wisconsin School of Medicine and Public Health (UW-SMPH), Madison, USA.
Carotid plaques-the buildup of cholesterol, calcium, cellular debris, and fibrous tissues in carotid arteries-can rupture, release microemboli into the cerebral vasculature and cause strokes. The likelihood of a plaque rupturing is thought to be associated with its composition (i.e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
Despite its unrivaled hardness, polycrystalline diamond can be severely worn under the interaction with softer copper during the ultrafine copper wire drawing process. The influence of the polycrystalline diamond surface state on its friction behavior is investigated in this work, and argon, oxygen, and hydrogen plasma treatments are adopted to regulate the surface state of diamond. When sliding against copper, the original diamond plate exhibits a coefficient of friction (COF) exceeding 0.
View Article and Find Full Text PDF3D Print Addit Manuf
June 2024
Department of Manufacturing Engineering, College of Engineering Guindy, Anna University, Chennai, India.
Selective laser sintering (SLS) is a powder bed fusion additive manufacturing process that uses polymer powders to produce functional parts directly from digital 3D models. SLS supports small- to medium-batch fabrication of customized products for various end-use applications. These parts can be used as tooling to support conventional manufacturing and inspection where mechanical and tribological behaviors are important.
View Article and Find Full Text PDFHeliyon
September 2024
Drilling Technology Team, EXPEC Advanced Research Center, Saudi Aramco, Dhahran, 31261, Saudi Arabia.
Casing wear is a persistent issue in oil and gas drilling facilities that call for innovative more wear-resistant materials to mitigate casing failures. The present work examines the tribological performance of a novel composite lining comprised of Kevlar honeycomb in a matrix of epoxy reinforced with Zirconia particles against hardband drillpipe tooljoint (DP-TJ). Three side loads (1000, 1200, and 1400 N) and three DP-TJ speeds (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!