Non-NMDA receptor-mediated vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex.

Somatosens Mot Res

a Institute of Biomedical Engineering , Boğaziçi University, Istanbul , Turkey.

Published: September 2017

Non-NMDA receptor-mediated vibrotactile responses of neurons from the hindpaw representation were investigated in the rat SI cortex. We recorded single-unit spikes evoked by sinusoidal (duration: 500 ms; frequency: 5, 40, and 250 Hz; amplitude: 100 μm peak-to-peak) stimulation of the glabrous skin. The responses were obtained with microinjection of aCSF (sham), bicuculline, and AMPA near the isolated neurons in anaesthetized rats. Blocking most of the NMDA receptors by ketamine revealed local dynamics differentially modulated by each drug. The responses were generally suppressed after the initial 100-ms period of the 40- and 250-Hz stimulus, but not at 5 Hz. Both drugs increased average firing rates (AFRs) only during vibrotactile stimulation, and increased entrainment as measured by the vector strength (VS) of spike phases. However, bicuculline was more effective on the AFR in the late period particularly at 40 Hz. Complex interactions were found with AMPA; late activity increased only for fast spiking neurons at 40 Hz, and more for regular spiking neurons at 5 Hz. The increase of VS by bicuculline was much higher in layer IV. In addition to thalamocortical feed-forward inhibition, vibrotactile information seems to be suppressed after 100 ms by longer-latency inhibitory networks tuned to mid-frequency inputs. Combined with the presumed AMPA-receptor desensitization, those two inhibitory factors could limit the excitatory flow mostly to lower frequencies. The frequency dependence of the drug effects highlights the role of local cortical dynamics in the hindpaw area.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08990220.2017.1390450DOI Listing

Publication Analysis

Top Keywords

non-nmda receptor-mediated
8
receptor-mediated vibrotactile
8
vibrotactile responses
8
responses neurons
8
neurons hindpaw
8
hindpaw representation
8
rat cortex
8
spiking neurons
8
neurons
5
vibrotactile
4

Similar Publications

Chemerin is an adipokine involved in regulating energy homeostasis and reproductive function. Excessive sympathetic activity contributes to hypertension, chronic heart failure and chronic renal disease. Hypothalamic paraventricular nucleus (PVN) is crucial in regulating sympathetic activity and blood pressure.

View Article and Find Full Text PDF

The phencyclidine-derivative ketamine [2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one] was added to the World Health Organization's Model List of Essential Medicines in 1985 and is also on the Model List of Essential Medicines for Children due to its efficacy and safety as an intravenous anesthetic. In sub-anesthetic doses, ketamine is an effective analgesic for the treatment of acute pain (such as may occur in the perioperative setting). Additionally, ketamine may have efficacy in relieving some forms of chronic pain.

View Article and Find Full Text PDF

Motoneurons that innervate the jaw-closing and jaw-opening muscles play a critical role in oro-facial behaviors, including mastication, suckling, and swallowing. These motoneurons can alter their physiological properties through the postnatal period during which feeding behavior shifts from suckling to mastication; however, the functional synaptic properties of developmental changes in these neurons remain unknown. Thus, we explored the postnatal changes in glutamatergic synaptic transmission onto the motoneurons that innervate the jaw-closing and jaw-opening musculatures during early postnatal development in rats.

View Article and Find Full Text PDF

Exposure to ethanol during the last trimester equivalent of human pregnancy causes apoptotic neurodegeneration in the developing brain, an effect that is thought to be mediated, in part, by inhibition of NMDA receptors. However, NMDA receptors can rapidly adapt to the acute effects of ethanol and are ethanol resistant in some populations of developing neurons. Here, we characterized the effect of ethanol on NMDA and non-NMDA receptor-mediated synaptic transmission in the retrosplenial cortex (RSC), a brain region involved in the integration of different modalities of spatial information that is among the most sensitive regions to ethanol-induced neurodegeneration.

View Article and Find Full Text PDF

Kainic acid (KA) is a potent agonist at non-N-methyl-D-aspartate (non-NMDA) ionotropic glutamate receptors and commonly used to induce seizures and excitotoxicity in animal models of human temporal lobe epilepsy. Among other factors, Ca 2.3 voltage-gated calcium channels have been implicated in the pathogenesis of KA-induced seizures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!