Neurons are among the most morphologically complex cells. A distinction between two compartments, axon and dendrite, generates cellular domains that differ in membrane composition and cytoskeletal structure, and sets the platform on which morphogens, transcription programs, and synaptic activity sculpt neuronal form. The establishment of this distinction, called Neuronal Polarity, entails interpreting spatial and intrinsic cues and converting them to cytoskeletal rearrangements that give rise to axons and dendrites. Hence, this early developmental event underpins the future functional properties of the neuron to receive and transmit information. Here we review the current understanding of developmental cues and cell biological mechanisms that establish polarity in newborn neurons, synthesizing information from vertebrate and invertebrate model systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuron.2017.10.021 | DOI Listing |
Adv Sci (Weinh)
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.
The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Biological Sciences, Rutgers University, Newark, NJ, USA.
Neurons are highly polarized cells, with axons that may innervate distant target regions. In the brain, basal forebrain cholinergic neurons (BFCNs) possess extensive axons that project to several target regions such as the cortex, hippocampus, and amygdala, and may be exposed to a specific microenvironment in their axon targets that may have retrograde effects on neuronal health. Interestingly, BFCNs express the pan-neurotrophin receptor p75NTR throughout life while also concomitantly co-expressing all Trk receptors, making them capable of responding to both mature and precursor neurotrophins to promote survival or apoptosis, respectively.
View Article and Find Full Text PDFJ Transl Med
January 2025
Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China.
Background: Ferroptosis and immune responses are critical pathological events in spinal cord injury (SCI), whereas relative molecular and cellular mechanisms remain unclear.
Methods: Micro-array datasets (GSE45006, GSE69334), RNA sequencing (RNA-seq) dataset (GSE151371), spatial transcriptome datasets (GSE214349, GSE184369), and single cell RNA sequencing (scRNA-seq) datasets (GSE162610, GSE226286) were available from the Gene Expression Omnibus (GEO) database. Through weighted gene co-expression network analysis and differential expression analysis in GSE45006, we identified differentially expressed time- and immune-related genes (DETIRGs) associated with chronic SCI and differentially expressed ferroptosis- and immune-related genes (DEFIRGs), which were validated in GSE151371.
Arch Biochem Biophys
January 2025
Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. Electronic address:
Polarization of microglia following spinal cord injury (SCI) is a pivotal pathological process of secondary injury. Although differentiation antagonistic nonprotein coding RNA (DANCR) has been implicated in immune and inflammatory responses across various diseases, its role in SCI still unclear. This research aimed to clarify the underlying mechanisms of DANCR in SCI recovery by investigating its expression pattern in microglia.
View Article and Find Full Text PDFSemin Immunol
January 2025
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Electronic address:
Once regarded as distinct systems, the nervous system and the immune system are now recognized for their complex interactions within the barrier tissues. The neuroimmune circuitry comprises a dual-network system that detects external and internal disturbances, providing critical information to tailor a context-specific response to various threats to tissue integrity, such as wounding or exposure to noxious and harmful stimuli like pathogens, toxins, or allergens. Using the skin as an example of a barrier tissue with the polarized sensory neuronal responses of itch and pain, we explore the molecular pathways driving neuronal activation and the effects of this activation on the immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!