AI Article Synopsis

  • The study aims to analyze and compare polyetherketoneketone (PEKK) with zirconia and titanium for implant-supported prostheses using 3D finite element analysis based on cone beam computed tomography and CAD data.
  • A geometric model featuring four maxillary implants and a prosthesis framework was created to simulate different materials' properties in a controlled environment.
  • The findings indicate that while the PEKK framework reduces stress on implants under compression, it can increase stress under tension, suggesting that more rigid materials provide better overall stress distribution and safety for the prosthesis components.

Article Abstract

Purpose: The purpose of this pilot study was to evaluate and compare polyetherketoneketone (PEKK) with different framework materials for implant-supported prostheses by means of a three-dimensional finite element analysis (3D-FEA) based on cone beam computed tomography (CBCT) and computer-aided design (CAD) data.

Materials And Methods: A geometric model that consisted of four maxillary implants supporting a prosthesis framework was constructed from CBCT and CAD data of a treated patient. Three different materials (zirconia, titanium, and PEKK) were selected, and their material properties were simulated using FEA software in the generated geometric model.

Results: In the PEKK framework (ie, low elastic modulus) group, the stress transferred to the implant and simulated adjacent tissue was reduced when compressive stress was dominant, but increased when tensile stress was dominant.

Conclusion: This study suggests that the shock-absorbing effects of a resilient implant-supported framework are limited in some areas and that rigid framework material shows a favorable stress distribution and safety of overall components of the prosthesis.

Download full-text PDF

Source
http://dx.doi.org/10.11607/ijp.5369DOI Listing

Publication Analysis

Top Keywords

three-dimensional finite
8
finite element
8
element analysis
8
based cone
8
cone beam
8
beam computed
8
computed tomography
8
computer-aided design
8
pekk framework
8
framework
6

Similar Publications

The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress-strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC.

View Article and Find Full Text PDF

Modeling of Electric Field and Dielectrophoretic Force in a Parallel-Plate Cell Separation Device with an Electrode Lid and Analytical Formulation Using Fourier Series.

Sensors (Basel)

December 2024

Department of Applied Physics, National Defense Academy, Hashirimizu 1-10-20, Yokosuka 239-0802, Kanagawa, Japan.

Dielectrophoresis (DEP) cell separation technology is an effective means of separating target cells which are only marginally present in a wide variety of cells. To develop highly efficient cell separation devices, detailed analysis of the nonuniform electric field's intensity distribution within the device is needed, as it affects separation performance. Here we analytically expressed the distributions of the electric field and DEP force in a parallel-plate cell separation DEP device by employing electrostatic analysis through the Fourier series method.

View Article and Find Full Text PDF

Small-section steel-shell concrete immersed tube tunnels are intended for minibuses and have a low fire heat release rate. Standard fire rise curves do not apply to such tunnels. In this study, a coupled method of computational fluid dynamics (CFD) and the finite element method (FEM) was used to simulate the structural temperature distribution in tunnels.

View Article and Find Full Text PDF

Obtaining reliable dynamic mechanical properties through experiments is essential for developing and validating constitutive models in material selection and structural design. This study introduces a dynamic tensile method using a modified M-type specimen loaded by a split Hopkinson pressure bar (SHPB). A closed M-type specimen was thus employed.

View Article and Find Full Text PDF

Background: Scoliosis is an idiopathic three-dimensional spine strain. The orthopedic parameter used to diagnose and evaluate the severity of the strain is Cobb's angle. This study proposes using this clinical parameter to reproduce a digital twin of the spine, calculate biomechanical stress changes, and characterize idiopathic scoliosis deformity through symmetrical degeneration of intervertebral discs, relying on patient-specific radiological measurements of the scoliotic curves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!