Neuronal correlates of ketamine and walking induced gamma oscillations in the medial prefrontal cortex and mediodorsal thalamus.

PLoS One

Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America.

Published: December 2017

Alterations in the function of the medial prefrontal cortex (mPFC) and its major thalamic source of innervation, the mediodorsal (MD) thalamus, have been hypothesized to contribute to the symptoms of schizophrenia. The NMDAR antagonist ketamine, used to model schizophrenia, elicits a brain state resembling early stage schizophrenia characterized by cognitive deficits and increases in cortical low gamma (40-70 Hz) power. Here we sought to determine how ketamine differentially affects spiking and gamma local field potential (LFP) activity in the rat mPFC and MD thalamus. Additionally, we investigated the ability of drugs targeting the dopamine D4 receptor (D4R) to modify the effects of ketamine on gamma activity as a measure of potential cognitive therapeutic efficacy. Rats were trained to walk on a treadmill to reduce confounds related to hyperactivity after ketamine administration (10 mg/kg s.c.) while recordings were obtained from electrodes chronically implanted in the mPFC and MD thalamus. Ketamine increased gamma LFP power in mPFC and MD thalamus in a similar frequency range, yet did not increase thalamocortical synchronization. Ketamine also increased firing rates and spike synchronization to gamma oscillations in the mPFC but decreased both measures in MD thalamus. Conversely, walking alone increased both firing rates and spike-gamma LFP correlations in both mPFC and MD thalamus. The D4R antagonist alone (L-745,870) had no effect on gamma LFP power during treadmill walking, although it reversed increases induced by the D4R agonist (A-412997) in both mPFC and MD thalamus. Neither drug altered ketamine-induced changes in gamma power or firing rates in the mPFC. However, in MD thalamus, the D4R agonist increased ketamine-induced gamma power and prevented ketamine's inhibitory effect on firing rates. Results provide new evidence that ketamine differentially modulates spiking and gamma power in MD thalamus and mPFC, supporting a potential role for both areas in contributing to ketamine-induced schizophrenia-like symptoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5667758PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186732PLOS

Publication Analysis

Top Keywords

mpfc thalamus
24
firing rates
16
gamma power
12
gamma
10
thalamus
10
mpfc
9
ketamine
8
gamma oscillations
8
medial prefrontal
8
prefrontal cortex
8

Similar Publications

Electroacupuncture Mitigates TRPV1 Overexpression in the Central Nervous System Associated with Fibromyalgia in Mice.

Life (Basel)

December 2024

College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.

Background: Fibromyalgia (FM) is characterized by chronic pain, significantly affecting the quality of life and functional capabilities of patients. In addition to pain, patients may experience insomnia, chronic fatigue, depression, anxiety, and headaches, further complicating their overall well-being. The Transient Receptor Potential Vanilloid 1 (TRPV1) receptor responds to various noxious stimuli and plays a key role in regulating pain sensitivity and inflammation.

View Article and Find Full Text PDF

Value-based decision-making involves weighing costs and benefits. The activity of the medial prefrontal cortex reflects cost-benefit assessments, and the mediodorsal thalamus, reciprocally connected with the medial prefrontal cortex, has increasingly been recognized as an active partner in decision-making. However, the specific role of the interaction between the mediodorsal thalamus and the medial prefrontal cortex in regulating the neuronal activity underlying how costs and benefits influence decision-making remains largely unexplored.

View Article and Find Full Text PDF

Purpose: Healthy diets are believed to be associated with a reduced risk of experiencing common mental disorders (CMDs) and related symptomatology (such as ruminative thinking), and with healthier brain chemistry and structure, especially in the frontal regions implicated in CMDs, cognitive control, and food choice. Nevertheless, there is very limited research on the relationship between diet health/quality and brain function. In this study we assessed the associations between adherence to the Mediterranean diet and resting state functional connectivity (rs-FC) of the prefrontal cortex (PFC) with the whole brain and whether this connectivity would be associated with ruminative thinking as a transdiagnostic factor for CMDs.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of paraventricular thalamus (PVT) neurons in the neural mechanisms behind methamphetamine (METH) addiction, highlighting that these neurons are activated by METH, influencing addiction behaviors.
  • Activation of glutamatergic neurons in PVT enhances METH-induced conditioned place preference (CPP), whereas inhibiting them reduces these addiction-related behaviors.
  • The research establishes a significant neural pathway between PVT and medial prefrontal cortex (mPFC), suggesting that this connection plays a crucial role in controlling METH addiction, though the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDF

Background: A recent neurodevelopmental rat model, utilizing lactational exposure to polyriboinosinic-polyribocytidilic acid (Poly I:C) leads to mimics of behavioral phenotypes resembling schizophrenia-like symptoms in male offspring and depression-like symptoms in female offspring.

Purpose: To identify mechanisms of neuronal abnormalities in lactational Poly I:C offspring using quantitative MRI (qMRI) tools.

Study Type: Prospective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!