We present the new homologous series (C(NH))(CHNH)PbI (n = 1, 2, 3) of layered 2D perovskites. Structural characterization by single-crystal X-ray diffraction reveals that these compounds adopt an unprecedented structure type, which is stabilized by the alternating ordering of the guanidinium and methylammonium cations in the interlayer space (ACI). Compared to the more common Ruddlesden-Popper (RP) 2D perovskites, the ACI perovskites have a different stacking motif and adopt a higher crystal symmetry. The higher symmetry of the ACI perovskites is expressed in their physical properties, which show a characteristic decrease of the bandgap with respect to their RP perovskite counterparts with the same perovskite layer thickness (n). The compounds show a monotonic decrease in the optical gap as n increases: E = 2.27 eV for n = 1 to E = 1.99 eV for n = 2 and E = 1.73 eV for n = 3, which show slightly narrower gaps compared to the corresponding RP perovskites. First-principles theoretical electronic structure calculations confirm the experimental optical gap trends suggesting that the ACI perovskites are direct bandgap semiconductors with wide valence and conduction bandwidths. To assess the potential of the ACI perovskites toward solar cell applications, we studied the (C(NH))(CHNH)PbI (n = 3) compound. Compact thin films from the (C(NH))(CHNH)PbI compound with excellent surface coverage can be obtained from the antisolvent dripping method. Planar photovoltaic devices from optimized ACI perovskite films yield a power-conversion-efficiency of 7.26% with a high open-circuit voltage of ∼1 V and a striking fill factor of ∼80%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b09096DOI Listing

Publication Analysis

Top Keywords

aci perovskites
16
cations interlayer
8
interlayer space
8
optical gap
8
cnhchnhpbi compound
8
perovskites
7
aci
6
type perovskites
4
perovskites alternating
4
alternating cations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!