Multiple mechanisms mediating carbon monoxide inhibition of the voltage-gated K channel Kv1.5.

Cell Death Dis

Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.

Published: November 2017

The voltage-gated K channel has key roles in the vasculature and in atrial excitability and contributes to apoptosis in various tissues. In this study, we have explored its regulation by carbon monoxide (CO), a product of the cytoprotective heme oxygenase enzymes, and a recognized toxin. CO inhibited recombinant Kv1.5 expressed in HEK293 cells in a concentration-dependent manner that involved multiple signalling pathways. CO inhibition was partially reversed by superoxide dismutase mimetics and by suppression of mitochondrial reactive oxygen species. CO also elevated intracellular nitric oxide (NO) levels. Prevention of NO formation also partially reversed CO inhibition of Kv1.5, as did inhibition of soluble guanylyl cyclase. CO also elevated intracellular peroxynitrite levels, and a peroxynitrite scavenger markedly attenuated the ability of CO to inhibit Kv1.5. CO caused nitrosylation of Kv1.5, an effect that was also observed in C331A and C346A mutant forms of the channel, which had previously been suggested as nitrosylation sites within Kv1.5. Augmentation of Kv1.5 via exposure to hydrogen peroxide was fully reversed by CO. Native Kv1.5 recorded in HL-1 murine atrial cells was also inhibited by CO. Action potentials recorded in HL-1 cells were increased in amplitude and duration by CO, an effect mimicked and occluded by pharmacological inhibition of Kv1.5. Our data indicate that Kv1.5 is a target for modulation by CO via multiple mechanisms. This regulation has important implications for diverse cellular functions, including excitability, contractility and apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775415PMC
http://dx.doi.org/10.1038/cddis.2017.568DOI Listing

Publication Analysis

Top Keywords

kv15
10
multiple mechanisms
8
carbon monoxide
8
voltage-gated channel
8
partially reversed
8
elevated intracellular
8
inhibition kv15
8
recorded hl-1
8
inhibition
5
mechanisms mediating
4

Similar Publications

We attempted to determine the optimal radiation dose to maintain image quality using a deep learning application in a physical human phantom. Three 5 × 5 × 5 mm uric acid stones were placed in a physical human phantom in various locations. Three tube voltages (120, 100, and 80 kV) and four current-time products (100, 70, 30, and 15 mAs) were implemented in 12 scans.

View Article and Find Full Text PDF

The present study was carried out to investigate the effect of atmospheric cold plasma treatment on the nutritional, anti-nutritional, functional, morphological, and digestibility of guar seed (Cyamopsis tetragonoloba L.) flour. Here, guar seed flour was kept inside the plasma reactor for 5 to 20 min at different power levels (10 & 20 kV).

View Article and Find Full Text PDF

Trabectedin modulates macrophage polarization in the tumor-microenvironment. Role of K1.3 and K1.5 channels.

Biomed Pharmacother

May 2023

Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain. Electronic address:

Immune cells have an important role in the tumor-microenvironment. Macrophages may tune the immune response toward inflammatory or tolerance pathways. Tumor-associated macrophages (TAM) have a string of immunosuppressive functions and they are considered a therapeutic target in cancer.

View Article and Find Full Text PDF

Sigma-1 receptor modulation fine-tunes K1.5 channels and impacts pulmonary vascular function.

Pharmacol Res

March 2023

Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain. Electronic address:

K1.5 channels are key players in the regulation of vascular tone and atrial excitability and their impairment is associated with cardiovascular diseases including pulmonary arterial hypertension (PAH) and atrial fibrillation (AF). Unfortunately, pharmacological strategies to improve K1.

View Article and Find Full Text PDF

Effect of atmospheric cold plasma (ACP) on chlorine-adapted Salmonella enterica on spring onion.

Lett Appl Microbiol

November 2022

Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.

One of the main drawbacks of chlorine disinfectants is the emergence of chlorine adapted (CA) or resistant microbial cells. This research aimed to investigate the effect of chlorine adaptation on resistance of Salmonella enterica upon atmospheric cold plasma (ACP) application at different voltages (6, 8 and 11 kV) and times (5, 10 and 15 min). Due to higher conversion efficiency and reduced dielectric barrier discharge power consumption, this method was used for cold plasma generation in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!