Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I.

Cell Death Dis

Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Published: November 2017

Arsenic trioxide (ATO) is a well-accepted chemotherapy agent in managing promyelocytic leukemia. ATO often causes severe health hazards such as hepatotoxicity, dermatosis, neurotoxicity, nephrotoxicity and cardiotoxicity. The production of reactive oxygen species, (ROS) play a significant role in ATO-induced hepatotoxicity. The oral hypoglycemic drug, metformin, is considered to be a potential novel agent for chemoprevention in the treatment of cancer. Moreover, metformin has also been shown to have hepatoprotective effects. In the present study, we demonstrated that metformin protected normal hepatocytes from ATO-induced apoptotic cell death in vitro and in vivo. Gene expression screening revealed that glucose metabolism might be related to the metformin-induced protective effect on ATO-treated AML12 cells. The metformin-promoted or induced glycolysis was not responsible for the protection of AML12 cells from ATO-induced apoptotic cell death. Instead, metformin increased the intracellular NADH/NAD+ ratio by inhibiting mitochondrial respiratory chain complex I, further decreasing the intracellular ROS induced by ATO. Treatment with low glucose or rotenone, a mitochondrial respiratory chain complex I inhibitor, also protected AML12 cells from ATO-induced apoptotic cell death. We show for the first time that metformin protects the hepatocyte from ATO by regulating the mitochondrial function. With its properties of chemoprevention, chemosensitization and the amelioration of liver damage, metformin has great prospects for clinical application other than type 2 diabetes mellitus (T2DM).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775401PMC
http://dx.doi.org/10.1038/cddis.2017.482DOI Listing

Publication Analysis

Top Keywords

ato-induced apoptotic
12
apoptotic cell
12
cell death
12
aml12 cells
12
arsenic trioxide
8
inhibiting mitochondrial
8
cells ato-induced
8
mitochondrial respiratory
8
respiratory chain
8
chain complex
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!