Ab initio and non-ab initio phasing methods are often unable to provide phases of sufficient quality to allow the molecular interpretation of the resulting electron-density maps. Phase extension and refinement is therefore a necessary step: its success or failure can make the difference between solution and nonsolution of the crystal structure. Today phase refinement is trusted to electron-density modification (EDM) techniques, and in practice to dual-space methods which try, via suitable constraints in direct and in reciprocal space, to generate higher quality electron-density maps. The most popular EDM approaches, denoted here as mainstream methods, are usually part of packages which assist crystallographers in all of the structure-solution steps from initial phasing to the point where the molecular model perfectly fits the known features of protein chemistry. Other phase-refinement approaches that are based on different sources of information, denoted here as out-of-mainstream methods, are not frequently employed. This paper aims to show that mainstream and out-of-mainstream methods may be combined and may lead to dramatic advances in the present state of the art. The statement is confirmed by experimental tests using molecular-replacement, SAD-MAD and ab initio techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S2059798317014590 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!