Ideal CdSe/CdS Core/Shell Nanocrystals Enabled by Entropic Ligands and Their Core Size-, Shell Thickness-, and Ligand-Dependent Photoluminescence Properties.

J Am Chem Soc

Center for Chemistry of Novel and High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P.R. China.

Published: November 2017

This work explored possibilities to obtain colloidal quantum dots (QDs) with ideal photoluminescence (PL) properties, i.e., monoexponential PL decay dynamics, unity PL quantum yield, ensemble PL spectrum identical to that at the single-dot level, single-dot PL nonblinking, and antibleaching. Using CdSe/CdS core/shell QDs as the model system, shell-epitaxy, ligand exchange, and shape conversion of the core/shell QDs were studied systematically to establish a strategy for reproducibly synthesizing QDs with the targeted properties. The key synthetic parameter during epitaxy was application of entropic ligands, i.e., mixed carboxylate ligands with different hydrocarbon chain length and/or structure. Well-controlled epitaxial shells with certain thickness (∼3-8 monolayers of the CdS shells) were found to be necessary to reach ideal photoluminescence properties, and the size of the core QDs was found to play a critical role in determining both photophysical and photochemical properties of the core/shell QDs. Effects of shape of the core QDs were unnoticeable, and shape of the core/shell QDs only affected photophysical properties quantitatively. Surface ligands, amines versus carboxylates, were important for photochemical properties (antiblinking and antibleaching) but barely affected photophysical properties as long as entropic ligands (mixed carboxylate ligands with distinguishable hydrocarbon chain lengths) were applied during epitaxy. Chemical environment (in polymer or in air), coupled with surface ligands, determined photochemical properties of the core/shell QDs with a given core size and shell thickness.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b07434DOI Listing

Publication Analysis

Top Keywords

core/shell qds
20
entropic ligands
12
photoluminescence properties
12
photochemical properties
12
properties
9
qds
9
cdse/cds core/shell
8
ideal photoluminescence
8
ligands mixed
8
mixed carboxylate
8

Similar Publications

We propose a temperature-dependent optimization procedure for the second-nearest neighbor (2NN) * tight-binding (TB) theory parameters to calculate the effects of strain, structure dimensions, and alloy composition on the band structure of heterostructure spherical core/shell quantum dots (QDs). We integrate the thermoelastic theory of solids with the 2NN * TB theory to calculate the strain, core and shell dimensions, and composition effects on the band structure of binary/ternary CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S QDs at any temperature. We show that the 2NN * TB theory with optimized parameters greatly improves the prediction of the energy dispersion curve at and in the vicinity of L and X symmetry points.

View Article and Find Full Text PDF

Construct ZnSeTe/ZnTe Nanostructures with the Tunable Emission from 450 to 760 nm.

J Phys Chem Lett

January 2025

Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China.

Developing heavy-metal-free materials with wide tunable emission is important to light-emitters. The alloying method is utilized in ZnSe magic size clusters (MSCs) with Te to form ZnSeTe and manipulate the band gap structure in ZnSe. The growth of ZnTe on alloyed ZnSeTe quantum dots (QDs) forms ZnSeTe/ZnTe core/shell nanostructures, showing the tunable photoluminescence emission peak from 450 to 760 nm with the different thicknesses of ZnTe shell.

View Article and Find Full Text PDF

The literature shows a lack of significant research on the synthesis of large spherical PbTe quantum dots (QDs), particularly with controllable sizes and morphology. Here, we present for the first time a novel hot-injection method for the tunable, high-quality synthesis of cubooctahedral PbTe QDs within the size range of 10 nm to 16 nm. This method employs a combination of oleic acid (OA) with shorter carboxylic acids, including octanoic (OctA), decanoic (DA), and lauric acids (LA), tested at various volumetric ratios.

View Article and Find Full Text PDF

This study highlights the aqueous synthesis of CdTe/ZnS core/shell quantum dots (QDs) and their application as fluorescence sensors for detecting critical metabolites, including folic acid, glucose, and vitamin C, in real biological samples. The synthesized QDs exhibit excellent quantum efficiency, stability, and biocompatibility, enhanced by mercaptopropionic acid (MPA) ligands, enabling eco-friendly and accurate sensing. Detection limits of 0.

View Article and Find Full Text PDF

Realizing low voltage-driven bright and stable quantum dot light-emitting diodes through energy landscape flattening.

Light Sci Appl

January 2025

Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, 475004, Kaifeng, China.

Solution-processed quantum dot light-emitting diodes (QLEDs) hold great potential as competitive candidates for display and lighting applications. However, the serious energy disorder between the quantum dots (QDs) and hole transport layer (HTL) makes it challenging to achieve high-performance devices at lower voltage ranges. Here, we introduce "giant" fully alloy CdZnSe/ZnSeS core/shell QDs (size ~ 19 nm) as the emitting layer to build high-efficient and stable QLEDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!