A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The MOF Technique: A Significant Synergic Effect Enables High Performance Chromate Removal. | LitMetric

The MOF Technique: A Significant Synergic Effect Enables High Performance Chromate Removal.

Angew Chem Int Ed Engl

School of Biology, Chemistry and Material Science, East China University of Technology, Fuzhou, Jiangxi, 344000, China.

Published: December 2017

A significant synergic effect between a metal-organic framework (MOF) and Fe SO , the so-called MOF technique, is exploited for the first time to remove toxic chromate from aqueous solutions. The results show that relative to the pristine MOF samples (no detectable chromate removal), the MOF method enables super performance, giving a 796 Cr mg g adsorption capacity. The value is almost eight-fold higher than the best value of established MOF adsorbents, and the highest value of all reported porous adsorbents for such use. The adsorption mechanism, unlike the anion-exchange process that dominates chromate removal in all other MOF adsorbents, as unveiled by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), is due to the surface formation of Fe Cr (OH) nanospheres on the MOF samples.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201709197DOI Listing

Publication Analysis

Top Keywords

chromate removal
12
mof
8
mof technique
8
mof samples
8
removal mof
8
mof adsorbents
8
electron microscopy
8
technique synergic
4
synergic enables
4
enables high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!