Maxillary cysts, including the cysts lined by respiratory epithelium, can present a diagnostic challenge. We report an unusual case of a maxillary cyst on an endodontically treated tooth #16, in which the cavity was totally lined by a respiratory epithelium. The patient, a 35-year-old male, presented with a generalized chronic periodontitis and complained of a pain in the tooth #16 region. A periodontal pocket extending to the root apices with pus coming out from the gingival was found. A combined endodontic periodontal was observed on a panoramic radiography. CBCT-scan revealed a well-circumscribed radiolucent lesion at the apices of the distobuccal root of the 16. A communication with the right maxillary sinus cavity and a maxillary and ethmoidal sinusitis were also observed. The lesion was removed and histological examination revealed a cyst lined exclusively by respiratory epithelium. Ciliated and rare mucous cells were also observed. The diagnosis could evoke a surgical ciliated cyst mimicking the radicular cyst but the patient has no previous history of trauma or surgery in the maxillofacial region. It could also be an unusual radicular cyst in which the stratified squamous epithelium was destroyed by inflammation and replaced by a respiratory epithelium of the maxillary sinus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637856 | PMC |
http://dx.doi.org/10.1155/2017/6249649 | DOI Listing |
Nat Rev Mol Cell Biol
January 2025
Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function.
View Article and Find Full Text PDFJ Allergy Clin Immunol Glob
February 2025
Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
Background: Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder marked by eosinophilic infiltration of the esophageal mucosa. Despite advances in understanding and management, optimal therapeutic strategies remain unclear, with conflicting guidelines.
Objective: We sought to evaluate effectiveness and safety of topical corticosteroids (TCSs) and proton pump inhibitors (PPIs) in managing EoE and their economic implications in Italy.
BMC Biol
January 2025
The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
Background: The microbiome regulates the respiratory epithelium's immunomodulatory functions. To explore how the microbiome's biodiversity affects microbe-epithelial interactions, we screened 58 phylogenetically diverse microbes for their transcriptomic effect on human primary bronchial air-liquid interface (ALI) cell cultures.
Results: We found distinct species- and strain-level differences in host innate immunity and epithelial barrier response.
BMC Oral Health
January 2025
Affiliated Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, People's Republic of China.
Objective: The aim of this study was to establish a three-dimensional finite element (FE) hydraulic pressure technique model and compare the biomechanical characteristics of the osteotome technique and the hydraulic pressure technique using three-dimensional finite element analysis (FEA).
Methods: Three FE models were created: the hydraulic pressure technique (M1), the osteotome technique with a Ø 1.6-mm osteotome (M2), and the osteotome technique with a Ø 3.
In Vitro Model
December 2024
Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany.
Purpose: For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies.
Methods: Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!