Visual crowding is a perceptual phenomenon with far-reaching implications in both perceptual (e.g., object recognition and reading) and clinical (e.g., developmental dyslexia and visual agnosia) domains. Here, we combined event-related fMRI measurements and wide-field brain mapping methods to investigate whether the BOLD response evoked by visual crowding is modulated by different attentional conditions. Participants underwent two sessions of psychophysical training outside the scanner, and then fMRI BOLD activity was measured simultaneously in early visual areas (including the visual word form area, VWFA), while they viewed strongly-crowded and weakly-crowded Gabor patches in attended and unattended conditions. We found that crowding increased BOLD activity in a network of areas including V1, V2, V3A, V4/V8, and VWFA. In V4/V8 and VWFA we found an increased activity related to attention. The effect of crowding in V1 was recorded only when attention was fully devoted to the target location. Our results provide evidence that some area beyond V1 might be the likely candidate for the site of crowding, thus supporting the view of visual crowding as a mid-level visual phenomenon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665925PMC
http://dx.doi.org/10.1038/s41598-017-13921-zDOI Listing

Publication Analysis

Top Keywords

visual crowding
12
bold activity
8
areas including
8
v4/v8 vwfa
8
visual
7
crowding
6
perceptual integration
4
integration attention
4
attention human
4
human extrastriate
4

Similar Publications

Background: Emergency department (ED) crowding is a growing concern worldwide and associated with negative effects. In 2013, 68% of Dutch ED-managers experienced crowding on several days of the week. This resulted into the introduction in phases of an ambulance diversion dashboard, in order to influence ED input.

View Article and Find Full Text PDF

Effects of maze appearance on maze solving.

Atten Percept Psychophys

January 2025

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, USA.

As mazes are typically complex, cluttered stimuli, solving them is likely limited by visual crowding. Thus, several aspects of the appearance of the maze - the thickness, spacing, and curvature of the paths, as well as the texture of both paths and walls - likely influence the performance. In the current study, we investigate the effects of perceptual aspects of maze design on maze-solving performance to understand the role of crowding and visual complexity.

View Article and Find Full Text PDF

It is striking that visual attention, the process by which attentional resources are allocated in the visual field so as to locally enhance visual perception, is a pervasive component of models of eye movements in reading, but is seldom considered in models of isolated word recognition. We describe BRAID, a new Bayesian word-Recognition model with Attention, Interference and Dynamics. As most of its predecessors, BRAID incorporates three sensory, perceptual, and orthographic knowledge layers together with a lexical membership submodel.

View Article and Find Full Text PDF

Introduction: Global Visual Selective Attention (VSA) is the ability to integrate multiple visual elements of a scene to achieve visual overview. This is essential for navigating crowded environments and recognizing objects or faces. Clinical pediatric research on global VSA deficits primarily focuses on autism spectrum disorder (ASD).

View Article and Find Full Text PDF

Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!