Proteogenomics has emerged as a valuable approach in cancer research, which integrates genomic and transcriptomic data with mass spectrometry-based proteomics data to directly identify expressed, variant protein sequences that may have functional roles in cancer. This approach is computationally intensive, requiring integration of disparate software tools into sophisticated workflows, challenging its adoption by nonexpert, bench scientists. To address this need, we have developed an extensible, Galaxy-based resource aimed at providing more researchers access to, and training in, proteogenomic informatics. Our resource brings together software from several leading research groups to address two foundational aspects of proteogenomics: (i) generation of customized, annotated protein sequence databases from RNA-Seq data; and (ii) accurate matching of tandem mass spectrometry data to putative variants, followed by filtering to confirm their novelty. Directions for accessing software tools and workflows, along with instructional documentation, can be found at z.umn.edu/canresgithub. .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5675041PMC
http://dx.doi.org/10.1158/0008-5472.CAN-17-0331DOI Listing

Publication Analysis

Top Keywords

informatics resource
8
software tools
8
accessible proteogenomics
4
proteogenomics informatics
4
resource cancer
4
cancer researchers
4
researchers proteogenomics
4
proteogenomics emerged
4
emerged valuable
4
valuable approach
4

Similar Publications

Intersection of rare pathogenic variants from TCGA in the All of Us Research Program v6.

HGG Adv

January 2025

Department of Biology, Brigham Young University, Provo, UT, 84061, USA; Simmons Center for Cancer Research, Brigham Young University, Provo, UT 84602, USA. Electronic address:

Using rare cancer predisposition alleles derived from The Cancer Genome Atlas (TCGA) and high cancer prevalence (14% of participants) in All of Us (version 6), we assessed the impact of these rare alleles on cancer occurrence in six broad groups of genetic similarity provided by All of Us: African/African American (AFR), Admixed American/Latino (AMR), East Asian (EAS), European (EUR), Middle Eastern (MID), or South Asian (SAS). We observed that germline susceptibility to cancer consistently replicates in EUR-like participants but less so in other participants. We found that All of Us participants from the EUR (p = 1.

View Article and Find Full Text PDF

Developing a decision support tool to predict delayed discharge from hospitals using machine learning.

BMC Health Serv Res

January 2025

Department of Industrial Engineering, Dalhousie University, PO Box 15000, Halifax, B3H 4R2, NS, Canada.

Background: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital overcrowding. Predicting these patients at admission allows for better resource planning, reducing bottlenecks, and improving flow.

View Article and Find Full Text PDF

This paper presents a surrogate-assisted global and distributed local collaborative optimization (SGDLCO) algorithm for expensive constrained optimization problems where two surrogate optimization phases are executed collaboratively at each generation. As the complexity of optimization problems and the cost of solutions increase in practical applications, how to efficiently solve expensive constrained optimization problems with limited computational resources has become an important area of research. Traditional optimization algorithms often struggle to balance the efficiency of global and local searches, especially when dealing with high-dimensional and complex constraint conditions.

View Article and Find Full Text PDF

The Homo sapiens Chromosomal Location Ontology (HSCLO) is designed to facilitate the integration of human genomic features into biomedical knowledge graphs from releases GRCh37 and GRCh38 at multiple resolutions. HSCLO comprises two distinct versions, HSCLO37 and HSCLO38, each tailored to its respective human genome release. This ontology supports the efficient integration and analysis of human genomic data across scales ranging from entire chromosomes to individual base pairs, thereby enhancing data retrieval and interoperability within large-scale biomedical datasets.

View Article and Find Full Text PDF

The HoloFood project used a hologenomic approach to understand the impact of host-microbiota interactions on salmon and chicken production by analysing multiomic data, phenotypic characteristics, and associated metadata in response to novel feeds. The project's raw data, derived analyses, and metadata are deposited in public, open archives (BioSamples, European Nucleotide Archive, MetaboLights, and MGnify), so making use of these diverse data types may require access to multiple resources. This is especially complex where analysis pipelines produce derived outputs such as functional profiles or genome catalogues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!