About one-third of patients with type 1 diabetes develops kidney disease. The mechanism is largely unknown, but intrarenal hypoxia has been proposed as a unifying mechanism for chronic kidney disease, including diabetic nephropathy. The endothelin system has recently been demonstrated to regulate oxygen availability in the diabetic kidney via a pathway involving endothelin type A receptors (ETA-R). These receptors mainly mediate vasoconstriction and tubular sodium retention, and inhibition of ETA-R improves intrarenal oxygenation in the diabetic kidney. Endothelin type B receptors (ETB-R) can induce vasodilation of the renal vasculature and also regulate tubular sodium handling. However, the role of ETB-R in kidney oxygen homeostasis is unknown. The effects of acute intrarenal ETB-R activation (sarafotoxin 6c for 30-40 min; 0.78 pmol/h directly into the renal artery) on kidney function and oxygen metabolism were investigated in normoglycemic controls and insulinopenic male Sprague-Dawley rats administered streptozotocin (55 mg/kg) 2 wk before the acute experiments. Intrarenal activation of ETB-R improved oxygenation in the hypoxic diabetic kidney. However, the effects on diabetes-induced increased kidney oxygen consumption could not explain the improved oxygenation. Rather, the improved kidney oxygenation was due to hemodynamic effects increasing oxygen delivery without increasing glomerular filtration or tubular sodium load. In conclusion, increased ETB-R signaling in the diabetic kidney improves intrarenal tissue oxygenation due to increased oxygen delivery secondary to increased renal blood flow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajprenal.00498.2017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!