The effect of rat serum versus fetal calf serum on the in vitro natural cytolytic activity of rat lymphocytes, macrophages and polymorphonuclear cells against syngeneic tumour cells was compared. The cytolysis level mediated by the three varieties of effector cells was lower when rat serum was used instead of fetal calf serum to supplement the culture medium. This could explain in part the discrepancies found between in vitro and in vivo studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11038181PMC
http://dx.doi.org/10.1007/BF00205798DOI Listing

Publication Analysis

Top Keywords

fetal calf
12
calf serum
12
activity rat
8
rat lymphocytes
8
lymphocytes macrophages
8
macrophages polymorphonuclear
8
polymorphonuclear cells
8
rat serum
8
serum
5
comparative rat
4

Similar Publications

Bovine viral diarrhea virus (BVDV) is an important pathogen affecting dairy cattle all over the world by causing significant economic losses due to reproductive and respiratory problems, immunosuppressive effects, increased risk of morbidity, and calf mortality. A cross-sectional study was conducted from February 2021 to August 2021 to determine the seroprevalence of bovine viral diarrhea (BVD) and identify risk factors associated with its occurrence in and around Nekemte Town of Ethiopia. Blood samples were collected from 305 dairy cattle of 41 herds by using cluster-sampling method.

View Article and Find Full Text PDF

Effects of assisted calving and retained fetal membranes on milk production in the smallholder farming system.

Vet Anim Sci

March 2025

Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal-INIFAP, km.1 Carretera a Colón, Ajuchitlán, Colón, Querétaro 76280, Mexico.

The impact of assisted calving, retained fetal membranes (RFM) and calf sex on milk production in small-scale dairy systems remains unknown. This study evaluated their impact on early lactation milk production and standardized 305-day yield (305MY) using 279 lactation records from 23 farms over 18 months. Variables analyzed included assisted calving, RFM, calf sex, and lactation number, with milk production at 30 days and 305MY as response variables.

View Article and Find Full Text PDF

Fructo-Oligosaccharides Enhance the Expression of Genes Related to Focal Adhesion- and Inflammation-Pathways in Small Intestinal Absorptive Caco-2 Cells.

J Nutr Sci Vitaminol (Tokyo)

January 2025

Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi.

Recently, we demonstrated, using mRNA microarray analysis, that fructo-oligosaccharides (FOS), which are indigestible carbohydrates, enhanced the expression of several inflammation-related genes, such as CLEC7A, CCL2, ITGA2, and F3, by ≥4-fold in Caco-2 cells, a model of human intestinal absorptive cells, independently of intestinal bacteria (Harasawa A et al., Nutrition, 112140, 2023). However, whether FOS enhances the expression of genes in other pathways, particularly the non-inflammatory pathways, in Caco-2 cells has not been investigated.

View Article and Find Full Text PDF

Seventy-two nonlactating, pregnant Angus cows (initial body weight [BW] = 637 ± 13 kg; body condition score [BCS] = 5.5 ± 0.07 yr; and age = 6.

View Article and Find Full Text PDF

The placenta plays a pivotal role in fetal development and the dam's subsequent lactation performance, because it facilitates nutrient transfer, heat dissipation, and gas exchange with the growing fetus, and regulates key hormones essential for mammary gland development. Heat stress experienced during gestation and lactation can significantly reduce the placenta's capacity to perform these critical functions. To investigate the impact of heat stress, trials were conducted over the summer months of 2020, 2022, and 2023 in Florida.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!