For the quantitative investigation of MeV-photon-induced changes in the refractive indices of bulk semiconductors, a model was established to describe the evolution of the excess carrier density, including the generation and recombination processes. The two key parameters of the evolution model, namely, the summed injection intensity and the gamma intensity curve, were obtained via dose measurements and gamma pulse monitoring, respectively. An interferometric method of measuring instantaneous changes in the refractive index and obtaining real-time measurements of the excess carrier density in bulk materials was successfully implemented. The probe beam was transmitted through a single-mode fiber to form double-beam interference in a slab geometry. Two bulk samples, one consisting of intrinsic GaAs and one of intrinsic ZnO, were tested. The recombination time constant of the intrinsic GaAs sample was found to be approximately 0.6 ns and did not vary distinctly with the photon energy, whereas the ZnO sample's recombination behavior consisted of two components. The short component was evident when short and intense pulses were incident, whereas the long component dominated under long and relatively weak pulses. The method reported in this work can be used to study the excess carrier dynamics induced by pulsed gamma radiation and to investigate the mechanisms of refractive index modulation under pulsed gamma conditions; thus, it is expected to be beneficial for guiding the development of RadOptic systems based on bulk materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5005171 | DOI Listing |
Zhonghua Xin Xue Guan Bing Za Zhi
January 2025
Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, China.
J Agric Food Chem
January 2025
Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada.
Nitrite is an important chemical intermediate in the nitrogen cycle and is ubiquitously present in environmental and biological systems as a metabolite or additive in the agricultural and food industries. However, nitrite can also be toxic in excessive concentrations. As such, the development of quick, sensitive, and portable assays for its measurement is desirable.
View Article and Find Full Text PDFBioeng Transl Med
January 2025
Polymeric micro- and nanoparticles are useful vehicles for delivering cytokines to diseased tissues such as solid tumors. Double emulsion solvent evaporation is one of the most common techniques to formulate cytokines into vehicles made from hydrophobic polymers; however, the liquid-liquid interfaces formed during emulsification can greatly affect the stability and therapeutic performance of encapsulated cytokines. To develop more effective cytokine-delivery systems, a clear molecular understanding of the interactions between relevant proteins and solvents used in the preparation of such particles is needed.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:
Background: The excessive application of enrofloxacin (ENR) results in residues contaminating both food and the environment. Consequently, developing robust analytical methods for the selective detection of ENR is crucial. The photoelectrochemical (PEC) sensor has emerged as a highly sensitive analytical technique that has seen rapid development in recent years.
View Article and Find Full Text PDFJ Control Release
January 2025
Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy; BioNanoMedicine Center NANOMIB, Università degli Studi di Milano-Bicocca, Italy. Electronic address:
Graphene oxide (GO) is an amphiphilic and versatile graphene-based nanomaterial that is extremely promising for targeted drug delivery, which aims to administer drugs in a spatially and temporally controlled manner. A typical GO nanocarrier features a polyethylene glycol coating and conjugation to an active targeting ligand. However, it is challenging to accurately model GO dots, because of their intrinsically complex and not unique structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!