A sputter deposition source for the use in ultrahigh vacuum (UHV) is described, and some properties of the source are analyzed. The operating principle is based on the design developed by Mayr et al. [Rev. Sci. Instrum. 84, 094103 (2013)], where electrons emitted from a filament ionize argon gas and the Ar ions are accelerated to the target. In contrast to the original design, two grids are used to direct a large fraction of the Ar ions to the target, and the source has a housing cooled by liquid nitrogen to reduce contaminations. The source has been used for the deposition of zirconium, a material that is difficult to evaporate in standard UHV evaporators. At an Ar pressure of 9×10 mbar in the UHV chamber and moderate emission current, a highly reproducible deposition rate of ≈1 ML in 250 s was achieved at the substrate (at a distance of ≈50 mm from the target). Higher deposition rates are easily possible. X-ray photoelectron spectroscopy shows a high purity of the deposited films. Depending on the grid voltages, the substrate gets mildly sputtered by Ar ions; in addition, the substrate is also reached by electrons from the negatively biased sputter target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4998700 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.
Faraday cages are extensively utilized in plasma-based etching and deposition processes to regulate ion behavior due to their shielding effect on electromagnetic fields. Herein, vertical silicon nanopillar arrays are fabricated through SF and O reactive ion etching. By incorporation of a Faraday cage in the plasma equipment, the impact of the Faraday cage on the morphology of the silicon nanopillars is analyzed; the Faraday cage blocks out the sputtered particles and eradicates the formation of silicon nanograss.
View Article and Find Full Text PDFNanoscale
January 2025
College of Science, China Agricultural University, Beijing, 100083, China.
Aqueous zinc-ion batteries are an appealing electrochemical energy storage solution due to their affordability and safety. Significant attention has been focused on vanadium oxide cathode materials for ZIBs, owing to their high specific capacity, unique layered or tunnel structures, and low cost. Compared to traditional methods for preparing and assembling electrode materials, direct current (DC) magnetron sputtering allows direct synthesis and uniform deposition on current collectors, offering advantages such as simplicity, mild reaction conditions, and strong film adhesion.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic.
Here, we present surface analysis and biocompatibility evaluation of novel composite material based on graphene oxide traded as BioHastalex. The pristine material's surface morphology and surface chemistry were examined by various analytical methods. The BioHastalex with a thin silver layer was subsequently heat treated and characterized, the impact on the material surface wettability and morphology was evaluated.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronics and Communication Engineering, National Institute of Technology Nagaland, Chumukedima, Nagaland, 797103, India.
NiO nanoparticles (NPs) synthesized using glancing angle deposition (GLAD) technique over MgZnO thin film was used to design a novel memory device. The NiO NPs with average diameter ~ 9.5 nm was uniformly distributed over the MgZnO thin film surface.
View Article and Find Full Text PDFSci Rep
January 2025
Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany.
We investigate the growth of amorphous MoSi thin films using magnetron co-sputtering and optimize the growth conditions with respect to crystal structure and superconducting properties (e.g., critical temperature [Formula: see text]).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!