We study the transport of a particle subjected to a Lévy noise in a rough ratchet potential which is constructed by superimposing a fast oscillating trigonometric function on a common ratchet background. Due to the superposition of roughness, the transport process exhibits significantly different properties under the excitation of Lévy noises compared to smooth cases. The influence of the roughness on the directional motion is explored by calculating the mean velocities with respect to the Lévy stable index α and the spatial asymmetry parameter q of the ratchet. Variations in the splitting probability have been analyzed to illustrate how roughness affects the transport. In addition, we have examined the influences of roughness on the mean first passage time to know when it accelerates or slows down the first passage process. We find that the roughness can lead to a fast reduction of the absolute value of the mean velocity for small α, however the influence is small for large α. We have illustrated that the ladder-like roughness on the potential wall increases the possibility for particles to cross the gentle side of the ratchet, which results in an increase of the splitting probability to right for the right-skewed ratchet potential. Although the roughness increases the corresponding probability, it does not accelerate the mean first passage process to the right adjacent well. Our results show that the influences of roughness on the mean first passage time are sensitive to the combination of q and α. Hence, the proper q and α can speed up the passage process, otherwise it will slow down it.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4996264 | DOI Listing |
Heliyon
January 2025
IVL Swedish Environmental Research Institute, Life Cycle Management, Sustainable Society, Vallhallavägen 81, 114 28, Stockholm, Sweden.
Today's globalised agricultural sector poses significant environmental challenges that are expected to worsen with population growth, increased urbanisation, and with the effects of climate change. In this context, vertical farming systems have gained traction as potential solutions to create a more resilient and sustainable food system. This study aims to evaluate the environmental performance of mixed salad bags from a conventional supply chain and compare it with that of mixed salad supplied by a large-scale vertical farm.
View Article and Find Full Text PDFObjectives Family caregivers of individuals with young-onset dementia (YOD) often struggle to seek help, despite the heavy burden of care. This study explored their feelings when attempting to find support in the early stages after diagnosis.Methods This qualitative descriptive study conducted semi-structured interviews with eight family caregivers of patients with YOD at home.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
Protein aggregation, a major concern in biopharmaceutical quality control, can be accelerated by various stresses during clinical handling. This study investigated potential aggregation risk factors during dilution process with syringe handling for intravenous administration. Using γ-globulin and IgG solutions as surrogate models of antibody therapeutics, we examined the effects of high sliding speeds and piston operations of the syringe on protein aggregation during saline dilution.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Universidad Autónoma de Coahuila, Facultad de Ingeniería Mecánica y Eléctrica Unidad Norte, Monclova 25720, Coahuila, Mexico.
Nowadays, metallic bone replacement is in high demand due to different issues, like sicknesses and accidents. Thus, bone implants are fabricated with tailored properties and microstructure for long-term use in the human body. To improve such implants, 3D printing is the most promising technique.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
The nicotinamide adenine dinucleotide phosphate (NADPH) dehydrogenase (NDH) complex is crucial for photosynthetic cyclic electron flow and respiration, transferring electrons from ferredoxin to plastoquinone while transporting H across the chloroplast membrane. This process boosts adenosine triphosphate production, regardless of NADPH levels. In flowering plants, NDH forms a supercomplex with photosystem I, enhancing its stability under high light.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!